Geri Dön

Bursa ili elektrik gücü talep tahmin analizi

Electric load demand forecasting for Bursa province

  1. Tez No: 613762
  2. Yazar: MUSTAFA EREN KOÇBEY
  3. Danışmanlar: DR. ÖĞR. ÜYESİ MEHMET KUBİLAY EKER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Balıkesir Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 113

Özet

Sinüzoidal sinyal yapısında akım taşınan enterkonnekte sistemin kararlı olarak çalışabilmesi için şebeke frekansının kabul edilebilir limitler içinde kalması gerekmektedir. Şebeke frekansı değişimi, tüketicilerin güç taleplerine ve üretim santrallerinin sisteme aktardığı güç miktarına bağlıdır. Üretim ve tüketim güç dengesinin sürekli olarak sağlanabilmesi için tüketicilerin anlık güç taleplerinin önceden tahmin edilmesi önemli bir problemdir. Talep tahmini, elektrik enerjisi üretim miktarının belirlenebilmesinin yanında, uygun elektrik enerjisi fiyatlandırması açısından da önemlidir. Üretim kaynakları açısından son yıllarda yenilenebilir enerji kaynaklarına yönelimin artması nedeniyle üretim miktarlarında da değişkenlik olabileceği dikkate alındığında, talep edilecek anlık güç miktarının yüksek doğrulukta analiz edilmesi çok daha önemli hale gelmiştir. Enterkonnekte sistemin yatırım planlamaları açısından uzun dönemli talep tahminlerinin yapılması da önemlidir. Elektrik gücü tüketimi, zaman, meteorolojik şartlar, nüfus ve ekonomik faktörlere göre değişkenlik göstermektedir. Bu çalışmada, 2014-2019 yılları arası dönem için, Bursa iline ait TEİAŞ'tan temin edilen saatlik güç tüketim verilerinin yanında, Bursa Meteoroloji İl Müdürlüğü'nden temin edilen saatlik sıcaklık, nem ve basınç verileri kullanılarak elektrik gücü talep tahmin analizi yapılmıştır. Çalışma kapsamında, elektrik gücü talep tahmini uygulaması için regresyon, yapay sinir ağları, regresyon ağacı, destek vektör regresyon, gaussian proses regresyon yöntemleri kullanılmıştır. Bu yöntemler için veri doğruluğu ve analiz hızları açısından yapılan karşılaştırmada, gaussian proses regresyon yönteminin daha doğruluklu, yapay sinir ağları ve regresyon ağacı yöntemlerinin ise daha hızlı sonuç ürettiği gözlenmiştir.

Özet (Çeviri)

In order to operate the interconnected system which carries current in the sinusoidal form, the network frequency must remain within acceptable limits. The frequency change in grid depends on the load demand of the consumers and amount of power transmitted by plants to the system. Forecasting of the instantaneous load demand in order to maintain the balance of generation and consumption power is an important issue. Load forecasting is not only important in determining the amount of electricity generation, but it is also important in terms of appropriate electricity pricing. Because of the increasing trend towards renewable energy sources in recent years, it has become much more important to analyze the amount of instantaneous power demand with high accuracy. It is also important to make long-term load forecasts in terms of investment planning of the interconnected system. Electrical power consumption also varies according to time, meteorological conditions, population and economic factors. In this study, electrical load demand forecast analysis was performed using hourly power consumption data obtained from TEIAS of Bursa province besides hourly temperature, humidity and pressure data obtained from Bursa Meteorology Provincial Directorate for the period between 2014-2019 years. Regression, artificial neural networks, regression tree, support vector regression, gaussian process regression methods were used for the estimation of electric load demand in this study. In the comparison of these methods, it was observed that the gaussian process regression method produced more accuracy results, artificial neural networks and regression tree methods yield faster results.

Benzer Tezler

  1. Destekleme alan süt sağım tesislerinin bazı yapısal özelliklerinin belirlenmesi

    Determination of some structural characteristics of subsidized milking facilities

    DUYGU KAHYA

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    ZiraatBursa Uludağ Üniversitesi

    Biyosistem Mühendisliği Ana Bilim Dalı

    PROF. DR. HALİL ÜNAL

  2. Bursa ili orta dönem elektrik talep tahmini

    Medium term electricity demand forecasting of Bursa

    ÖMER GÜLTEKİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Elektrik ve Elektronik MühendisliğiDumlupınar Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. BEKİR MUMYAKMAZ

  3. Farklı yöntemler kullanılarak Bursa ve Türkiye için elektrik enerjisi talep tahmini

    Forecasting electricity demand of Bursa and Turkey using different methods

    ELİF UZUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik MühendisliğiBursa Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AYETÜL GELEN

  4. Bursa ili merkezi biyogaz tesisleri planlama modelinin geliştirilmesi

    Development of central biogas systems planning modelin Bursa

    FATMA KARADAĞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    ZiraatIsparta Uygulamalı Bilimler Üniversitesi

    Tarımsal Yapılar ve Sulama Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HALİL İBRAHİM YILMAZ

  5. Bursa ili organize sanayi bölgelerinin enerji ve doğal kaynak tüketim miktarlarının holt-winters yöntemiyle tahminlenmesi

    Estimation of amount of energy and natural resources consumption of organized industrial zones in Bursa by holt-winters method

    EBRU AKSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Endüstri ve Endüstri MühendisliğiBursa Teknik Üniversitesi

    Orman Endüstri Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MESUT UYSAL