Geri Dön

Implementation of machine learning algorithms for eeg based controlling of a robotic arm

Eeg tabanlı robotik kol kontrolü için makine öğrenme algoritmalarının uygulanması

  1. Tez No: 617280
  2. Yazar: GÜLŞEN AYLUÇTARHAN
  3. Danışmanlar: YRD. DOÇ. DR. İBRAHİM ZİNCİR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Yaşar Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 54

Özet

Elektroensefalografi (EEG) analizi; sinir bilimi, tanı ve rehabilitasyon mühendisliği gibi birçok çalışmanın önemli bir konusu olmuştur. EEG'nin büyük ölçüde beyin-bilgisayar ara yüzü (BCI) ile kullanılmasının nedeni bu sistemin dış protez cihazlarını kaslar yerine beyin dalgaları ile kullanabilme yeteneğidir. Teknolojinin gelişmesi ile, anlaşılabilir bir bilgi çıkarmak için daha büyük EEG veri tabanları ve BCI metodu kullanmak mümkün hale gelmiştir. Bu çalışmada, katılımcılara bir seri kavrama ve kaldırma el hareketleri yaptırılarak EEG tabanlı BCI metodu kullanıldı. EEG ve EMG bilgisinden oluşan veri 15 makine öğrenimi algoritmasıyla çok sınıflı sınıflandırma kullanılarak uygulandı. En iyi sonuçlar IB1 algoritmasından geldi. Ancak, random forest, bagging ve classification via regression algoritmaları da umut verici sonuçlar gösterdi. Böylece bu çalışma başarılı bir şekilde el fonksiyonu çalışmayan hastaların kontrol kazanmasına yardımcı olmanın mümkün olduğunu kanıtladı.

Özet (Çeviri)

Electroencephalography (EEG) analysis has been an important subject of several studies like neuroscience, medical diagnosis and rehabilitation engineering. EEG is widely used with brain-computer interface (BCI) systems because of its ability to use brain signals not muscles to control an external BCI prosthetic device. With the development of technology, it became possible to use large EEG datasets and BCI method to extract an understandable information. In this present work, EEG-based BCI system is used by making participants perform a series of grasping and lifting hand movements. Dataset which consists of EEG and EMG information has been implemented via 15 machine learning algorithms as multiclass classification. The best results came from IB1 algorithm. But, random forest, bagging and classification via regression algorithms also have promising outcomes. Hence, this study successfully proved that it is possible to help patients with no hand function to gain control.

Benzer Tezler

  1. Obtaining EEG-based features of mental states with brain-computer interfaces using machine learning

    Makine öğrenmeyi kullanarak beyin-bilgisayar arayüzleri ile zihinsel durumların EEG tabanlı özelliklerinin elde edilmesi

    AHSAN MUMTAZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. IMAN ELAWADY

  2. EEG sinyallerinin sınıflandırılmasında kuantum tabanlı karar destek sisteminin gerçekleştirilmesi

    Implementation of a quantum-based decision support system for classification of EEG signals

    GAMZEPELİN AKSOY

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT KARABATAK

  3. Investigation of emotional state using machine learning techniques based on complexity and spectral features of electroncephalogram

    Duygu durumunun elektroensofalografideki karmaşıklık ve spektral öznitelikler temelinde makina öğrenme teknikleri ile araştırılması

    AHMED M. ABDALLA MOHAMED

    Doktora

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN NURİ UÇAN

    DOÇ. DR. ADİL DENİZ DURU

  4. EEG sinyalleri ile epilepsi krizinin tahminlenmesinde rassal orman algoritması ile hiper parametre optimizasyonun uygulanması

    Implementation of hyper parameter optimization with random forest algorithm for the estimation of the epileptic seizures with EEG signals

    FATİH MURATHAN YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Ticaret Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSTAFA CEM KASAPBAŞI

  5. Design and implementation of emotion and neurological disorder detection system using EEG signals

    EEG sinyalleri kullanılarak duygu ve nörolojik rahatsızlık tespit sistemi tasarımı ve uygulaması

    BETÜL YÜRDEM

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiDokuz Eylül Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET ÖZKURT