Geri Dön

Yanık görüntülerinin çok değişkenli istatistiksel yöntemler ve derin öğrenme yaklaşımları ile analizi

Analysis of burn images by multivariate statistical methods and deep learning approaches

  1. Tez No: 620703
  2. Yazar: ERDİNÇ KARAKULLUKÇU
  3. Danışmanlar: DR. ÖĞR. ÜYESİ UĞUR ŞEVİK
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, İstatistik, Computer Engineering and Computer Science and Control, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: Karadeniz Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İstatistik ve Bilgisayar Bilimleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 142

Özet

Yanık uzmanlarının nadiren bulunduğu özellikle kırsal kesim acil servislerinde, yanık yarasının fotoğraflarının çekilmesi ve görüntülerin yanık uzmanları tarafından incelenebileceği tam teşekküllü bir sağlık merkezine gönderilmesi ile hastaya yapılacak ilk müdahaleye karar verilebilmektedir. Sunulan tezin amacı, yanık hastalarına ilişkin 105 adet dijital (2D) görüntüdeki sağlıklı ve yanık deriye ilişkin bölgelerin tespit edilebilmesidir. Tezde bu amaç doğrultusunda, iki tip yaklaşım önerilmiştir. Segmentasyon ve sınıflandırma olmak üzere iki aşamadan oluşan ilk yaklaşımda, literatürde yaygın olarak kullanılan 4 segmentasyon ve 10 sınıflandırma yönteminin performansı, değişen renk uzaylarına (CIE L*a*b*, HSV, YCbCr) ve sınıflandırıcı eğitiminde kullanılan öznitelik matrislerine (gri seviye histogram istatistikleri, Haralick öznitelikleri, ortalama parlaklık değerleri) göre değerlendirilmiştir. En iyi sınıflandırma performansı, CIE L*a*b* renk uzayının a* ve b* renk kanallarının FCM'de girdi verisi olarak kullanıldığı ve segmente edilmiş görüntüdeki her bir bölgenin ileriye doğru seçim sonrasında elde edilen 9 adet Haralick özniteliği kullanılarak eğitilmiş yapay sinir ağı modeli ile sınıflandırıldığı durumda elde edilmiştir. 5-katmanlı çapraz doğrulamada hesaplanan ortalama F-skoru %74.28 olarak bulunmuştur. Sunulan tezde kullanılan ikinci yaklaşımda, U-Net ve SegNet mimarileri, iki çeşit eğitim seti kullanılarak eğitilmiş ve 64x64 piksel boyutundaki bloklar ile eğitilen SegNet modeli 5-katmanlı çapraz doğrulama ortamında %80.5'lik bir ortalama F-skoru elde etmiştir.

Özet (Çeviri)

Especially in rural emergency departments where burn specialists are rarely present, in order to decide on the first intervention to the patient, photographs of the burn wound are taken and sent to a full-fledged health center where the images can be examined by burn specialists. The aim of this thesis is to determine the healthy and burned skin regions in 105 digital (2D) images of burn patients. Two types of approaches have been proposed for this purpose. In the first approach consisting of two stages, segmentation and classification, the performance of 4 segmentation and 10 classification methods commonly used in the literature was evaluated in terms of changing color spaces (CIE L*a*b*, HSV, YCbCr) and the feature matrices (gray level histogram statistics, Haralick attributes, average pixel intenstiy values) used in the training phase of the classifiers. The best classification performance was achieved in the case when a* and b* color channels of the CIE L*a*b* color space were used as the input data in the FCM, and each segmented region was classified by the ANN classifier trained with 9 Haralick features that were selected by forward selection. The average F-score calculated by 5-fold cross-validation was 74.28%. In the second approach used in the thesis, U-Net and SegNet architectures were trained using two kinds of training sets and the SegNet model, which was trained with 64x64 pixel image blocks, achieved an average F-score of 80.5% in a 5-fold cross-validation environment.

Benzer Tezler

  1. An ensemble learning model for wide-area measurement based transient stability assessment in power systems

    Güç sistemlerinde geniş alan ölçümlerine dayalı geçici hal kararlılık değerlendirmesi için bir topluluk öğrenme modeli

    CAN BERK SANER

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. VEYSEL MURAT İSTEMİHAN GENÇ

  2. Prediction of COVID 19 disease using chest X-ray images based on deep learning

    Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini

    ISMAEL ABDULLAH MOHAMMED AL-RAWE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ADEM TEKEREK

  3. Random forest classification of tomato fields with planet satellite image data and accuracy assessment

    Planet uydu görüntü verileriyle yüksek doğruluklu domates ürün tipi sınıflandırmasında rastgele orman sınıflandırma yönteminin kullanımı ve doğruluk analizi

    BETÜL ŞALLI

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞE FİLİZ SUNAR

  4. Görüntülerde tipik noktaların tam otomatik olarak bulunmasına ilişkin yeni bir yaklaşım

    A new approach for locating typical points automatically in images

    NURCAN SEYLAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2008

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge Üniversitesi

    Uluslararası Bilgisayar Ana Bilim Dalı

    PROF. DR. AYDIN ÖZTÜRK

  5. Uzaktan algılama verilerinden su kalitesi parametrelerinin tespit edilmesi

    Detection of water quality parameters from remote sensing data

    ERSAN BATUR

    Doktora

    Türkçe

    Türkçe

    2019

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. MİTHAT DERYA MAKTAV