Geri Dön

Knowledge-based simulation system for thermal enhanced oil recovery using steam

Başlık çevirisi mevcut değil.

  1. Tez No: 625965
  2. Yazar: İBRAHİM PALAZ
  3. Danışmanlar: YRD. DOÇ. DR. DANIŞMAN YOK
  4. Tez Türü: Doktora
  5. Konular: Jeoloji Mühendisliği, Geological Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1989
  8. Dil: İngilizce
  9. Üniversite: South Dakota State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 157

Özet

A computer system has been developed for predicting performances of steam stimulation and steam flooding operations. The system is designed to couple numerical and symbolic computing. Numerical computing provides the precision needed in the engineering aspects, and symbolic computing provides the insight into the performance of numerical computing and the interpretation of these calculations. In order to solve thermal recovery problems, similar to most petroleum engineering problems, both insight and precision are always needed. Insight into the problem solving process must be gained in order to obtain a solution, or insight is needed to interpret the computed results. Coupling symbolic with numerical computing enabled us to integrate the explanation and problem solving capabilities with the precision in performing the numerical calculations. The system continuously interacts with the user as it acquires information, as well as provides guidance in the process of evaluating the choices that are available at any particular time. Solutions of the steam stimulation and steam flooding performances, (determination of operational parameters, heat .ıosses, heat transfer, rate of production increase, with economic analysis of the operatjon) require accurate selection of nearly 350 parameters and 250 different equations. At every stage a proper equation should be selected among several possible candidates for use in calculation ofa parameter. The system make these selections using over 500 rules in 17 knowledge bases. Alsa all parameters necessary fora particular calculation are determined by either direct user input or approximations and interpolations based on available reservoir data. The system has been developed using an expert system development tooı,·on an !BM-AT compatible rnachine. The minimum hardware requirements are 1MB RAM and ıo MB hard disk space. The system has been tested with published data of Kern River, California, Tia Juana, Venezuela and Smackover, Arkansas steamflooding cases. The system's predictions are in very good agreement with the actual field

Özet (Çeviri)

a

Benzer Tezler

  1. Makine öğrenmesi tabanlı iç ortam sıcaklık kontrolü için bir simülatör yazılımı tasarımı

    Design of a simulator software for machine learning-based indoor temperature control

    AYDIN BOSTANCI

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    PROF. DR. DEVRİM AKGÜN

  2. Güneş enerjili yemek pişirme cihazı

    A Hot box type solar cooker

    MAHMUT D. MAT

    Yüksek Lisans

    Türkçe

    Türkçe

    1992

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    YRD. DOÇ. DR. A. KORHAN BİNARK

  3. Performance of laminated glass subjected to blast and impact loading

    Patlama ve darbe yüklemesine maruz kalan lamine camın yapısal performansı

    MOHELDEEN HEJAZI

    Doktora

    İngilizce

    İngilizce

    2024

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ SARI

  4. Sıcak-kuru iklim bölgelerinde enerji korunumu-yerleşme dokusu-form etkileşimi:Geleneksel Diyarbakır evleri örneği

    Energy conservation-settlement pattern–form interaction in hot-arid climate zone:Traditional Diyarbakır houses

    İDİL ERDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. GÜL KOÇLAR ORAL

  5. State of charge estimation of lithium-ion batteries using machine learning approach

    Makine öğrenmesi yaklaşımı kullanılarak lityum iyon pillerin şarj durumu tahmini

    OSMAN ALPER ALTUN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. EMİNE AYAZ