Geri Dön

Mutlak möbius bölen fonksiyonu ve özellikleri

Absolute möbius divisor function and properties

  1. Tez No: 627242
  2. Yazar: ÜMİT SARP
  3. Danışmanlar: PROF. DR. SEBAHATTİN İKİKARDEŞ, PROF. DR. DAEYEOUL KIM
  4. Tez Türü: Doktora
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Balıkesir Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Matematik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 99

Özet

Bu tezde Dirichlet çarpımı yardımıyla bir toplam fonksiyonu olan Mutlak Möbius Bölen Fonksiyonu U(n) tanımlanmış ve özellikleri incelenmiştir. İlk olarak U(n) ve Euler Totient φ(n) Fonksiyonu arasındaki özellikler araştırılmıştır. Daha sonra U(n) ile Fermat asalları arasındaki ilişki araştırılmış ve bazı sonuçlar elde edilmiştir. Ardından U(n) yardımıyla şifreleme alanında kullanılan bazı denklemler çözülmüş ve son olarak Möbius-Stirling sayıları, G_n(x) kuvvet serileri ve V(n) toplam fonksiyonu tanımlanmış ve özellikleri incelenmiştir. Bu tez dokuz bölümden oluşmaktadır. Birinci bölümde; Möbius Fonksiyonu μ(n), Euler Totient Fonksiyonu φ(n) gibi aritmetik fonksiyonlar tanıtılmış, çeşitli sayı kümeleri ile ilgili aritmetik fonksiyonların sonuçları değerlendirilmiş ve genel bir literatür özeti yapılmıştır. İkinci bölümde, temel tanımlar ve teoremler verilmiştir. Ayrıca aritmetik fonksiyonlar hakkında bazı özellikler açıklanmıştır. Üçüncü bölümde; Mutlak Möbius Bölen Fonksiyonu U(n)'nin tanımı yapılmış, U(n) üzerinden U_i(n) ve Ord(n) fonksiyonları gibi diğer tanımlar verilmiş ve Mutlak Möbius Bölen Fonksiyonunun çokgen şekilleri açıklanarak örneklendirilmiştir. Dördüncü bölümde, U(n) fonksiyonunun özellikleri açıklanmış ve φ(n) fonksiyonu ile benzerlik ve farklılık gösteren yönleri incelenmiştir. Ayrıca Ord(n)=2 olacak biçimde U(n) fonksiyonu yardımıyla oluşturulan çokgen şekillerin sınıflandırılması yapılmıştır. Beşinci bölümde, kriptoloji için önemli olarak değerlendirilen φ(n)=φ(n+1) ifadesinden yola çıkarak φ(n)=φ(n+1)=U(n)=U(n+1) eşitlikleri incelenmiş ve çeşitli sonuçlara ulaşılmıştır. Altıncı bölümde, U(n) yardımıyla G_n(x) kuvvet serileri tanımlanmış ve özellikleri incelenmiştir. Yedinci bölümde, Möbius-Stirling sayıları tanımlanmış ve bazı özellikleri açıklanmıştır. Sekizinci bölümde, U(n) yardımıyla V(n) toplam fonksiyonu tanımlanmış ve özellikleri verilmiştir. Dokuzuncu bölümde; tez genelinde elde edilen sonuçlar özetlenmiş ve bazı önerilere yer verilmiştir.

Özet (Çeviri)

In this thesis, we introduce Absolute Möbius Divisor Function U(n) which is a total function is defined by Dirichlet product, and its properties are examined. First, some properties between U(n) and Euler Totient Function have been investigated. Then, the relationship between U(n) and Fermat prime numbers have been investigated and some results have been obtained. Also, with the help of U(n), some equations are solved and finally Möbius-Stirling numbers, G_n(x) power series and V(n) function are defined and examined. This thesis consists of nine chapters. In the first chapter; arithmetic functions such as Möbius Function μ(n), Euler Totient Function φ(n) and related results have been given, the results of arithmetic functions related to various number sets have been evaluated, and a general literature abstract has have been given. In the second chapter, basic definitions and theorems have been given and examined. Also some properties about arithmetic functions have been explained. In the third chapter; The absolute Möbius Divisor Function U(n) has been defined, other definitions such as U_i(n) and Ord(n) functions have been given and the polygonal shapes of the absolute Möbius Divisor Function have been explained and exemplified. In the fourth chapter, The properties of the U(n) function have been explained and the similarities and the different aspects of φ(n) function have been examined. Also for Ord(n)=2, polygonal shapes have been classified by the help of U(n) function. In the fifth chapter, φ(n)=φ(n+1)=U(n)=U(n+1) equations were examined based on φ(n)=φ(n)(n+1) expression which has been considered important for cryptology. In the sixth chapter, G_n(x) power series have been defined and their properties have been examined with the help of U(n). In the seventh chapter, Möbius-Stirling Numbers have been defined and some of their properties have been explained. In the eighth chapter, V(n) total function has been defined and its properties have been given. In the ninth chapter, the results obtained throughout the thesis have been summarized and some suggestions have been given.

Benzer Tezler

  1. Dirichlet serileri ve bazı özel üreteç fonksiyonların araştırılması

    Dirichlet series and research on some special generating functions

    HAVVA DÖNMEZ

    Doktora

    Türkçe

    Türkçe

    2009

    MatematikSelçuk Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. HASAN ŞENAY

  2. Log O-r dönüşümleri ve G(karekökü m) hecke gruplarının çarpan değerleri

    Başlık çevirisi yok

    SİMTEN BAYRAKÇI

    Yüksek Lisans

    Türkçe

    Türkçe

    1996

    MatematikAkdeniz Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ.DR. VELİ KURT

  3. Mutlak olmayan tipten bazı dizi uzayları ve matris dönüşümleri

    Some sequence spaces of non-absolute type and matrix mapping

    HALİS AYKUT COŞGUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    MatematikErciyes Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ. DR. ABDULCABBAR SÖNMEZ

  4. Mutlak çift seri uzayları ve matris dönüşümleri

    Absolute double series spaces and matrix transformations

    ASLIHAN ILIKKAN CEYLAN

    Doktora

    Türkçe

    Türkçe

    2024

    MatematikPamukkale Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ. DR. GÜLLÜ CANAN HAZAR GÜLEÇ

  5. Türk kiralama hukukunda mülkiyet hakkının ihlali: Avrupa İnsan Hakları Sözleşmesi çerçevesinde bir değerlendirme

    Violation of the right to property in Turkish lease law: An assessment within the framework of the European Convention on Human Rights

    SELİM YAVUZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Uluslararası İlişkilerİstanbul Üniversitesi

    Siyaset Bilimi ve Uluslararası İlişkiler Ana Bilim Dalı

    PROF. DR. SEFER ŞENER