Makine öğrenmesi teknikleri kullanılarak kredi risk analizi
Credit risk analysis using machine learning techniques
- Tez No: 629717
- Danışmanlar: DR. ÖĞR. ÜYESİ AHMET GÜRHANLI
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: İstanbul Aydın Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 78
Özet
İnsanların son dönemlerde bankalardan kredi talepleri oldukça fazlalaştığı görülmektedir. Bu durum bankalar açısından olumlu bir durum gibi gözükse de aynı zamanda çok fazla risk teşkil etmektedir. Banka ve finans sektörlerinde risk yönetiminin doğru yapılması, mevcut olan kaynakların verimli ve iyi kullanılması, oluşacak riskleri tahmin ederek zamanında önlem alınmasına ile bağlantılıdır. Sorun teşkil eden kredilerin öngörülebilir olması bankalar için kararlılık açısından büyük önem taşımaktadır. Kredi almak için talepte bulunan kişilere, bankaların kredi vermesi, bankaların temel faaliyetlerdendir. Fakat bu temel faaliyet aynı zamanda riskli bir faaliyettir. Bankalar kuruluş amaçları gereği risk almaktan kaçınmazlar ve alınan bu riskleri yönetmektedirler. Bu risk yönetimini yaparken, bankaların verilen kredi tutarlarından oluşabilecek zararları en az seviyede tutabilecek şekilde risk yönetimlerini yapmaları gerekir. Bütün bu sebepler göz önünde bulundurularak, son dönemlerde bankaların kredilendirme işlemlerini hızlandırmak ve olumlu kararlar verebilmek adına veri madenciliği başta olmak üzere, farklı farklı algoritma modelleri, algoritma sınıflandırmaları, yapay sinir ağları gibi makine öğrenmesi tekniklerini kullanmaya başladıkları görülmektedir. Bu çalışmada çeşitli makine öğrenmesi tekniklerinden yararlanılarak kredi talebinde bulunan müşterilerin krediye uygun olup, olmadığının doğruluğu test edilmiştir. Veri seti olarak german credit data UCI' de bulunan erişimi açık veri kümesi kullanılmıştır. Bu çalışmadaki veri kümesinde bulunan 1000 adet müşteri baz alınarak XGBoost sınıflandırıcısında %75,60 başarı oranı yakalanmıştır. Bu başarı oranı daha önce XGBoost sınıflandırıcısı ile yapılan çalışmalar arasında en yüksek başarı oranına sahiptir. Ayrıca yapılan diğer çalışmalarda kullanılan algoritmalar içerisinde de en yüksek başarı oranı sağlanmıştır.
Özet (Çeviri)
It can be easily observed that the general public is putting in more and more loan requests in the banking system recently, which can be regarded as a positive development for the banks, while at the same time presenting a considerable risk. Accurate risk management in the banking and finance sector is related to efficient and optimized use of the current resources, assessment of possible risks and taking timely precautions. It is of utmost importance for the banks to predict the problematic loans in terms of long-term stability. Giving credits to the applicants is one of the fundamental activities of the banks, however; the same activity brings significant risks. As part of their founding purpose, the banks do not avoid taking risks, and they choose to manage them. The banks should perform their risk management in the way to keep the damages resulting from the amount of loans they give to a minimum. Considering the above and in order to speed up the lending procedures in banks while making advantageous decisions, different algorithmic models and classifications, machine learning techniques such as artificial neural networks were started to be used lately, data mining being at the first place. In this study, the accuracy of the applicants' eligibility status for loans was determined by making use of several machine learning techniques. The open-access dataset from the German Credit Data UCI was employed. Based on the 1000 customers in this study's dataset, a 75,60% success rate was achieved in the XGBoost classifier, which has the best success rate among the studies conducted with the XGBoost classifier previously. In addition, the success rate is the highest among the other algorithms used in various studies made.
Benzer Tezler
- Makine öğrenmesi teknikleriyle mobil ödemede sahtekarlık tespiti
Fraud detection in mobile payment with machine learning methods
ÖZLEM GÜVEN
Yüksek Lisans
Türkçe
2021
EkonometriDokuz Eylül ÜniversitesiEkonometri Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SERKAN ARAS
- Topluluk öğrenmesi tabanlı yöntemler üzerine
On ensemble learning based methods
ELİF HAZAL KARA DUMAN
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. BURAK ORDİN
- Destek vektör makineleri yardımıyla tüketici kredilerinin sınıflandırılması
Classifying consumer loans by means of support vector machines
KAYAHAN KAYA
Yüksek Lisans
Türkçe
2016
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
PROF. DR. FERHAN ÇEBİ
- İklimlendirme sistemleri üzerinde makine öğrenmesi ile anomali tespiti
Anomaly detection with machine learning on air conditioning systems
REFİK KİBAR
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUHAMMED FATİH ADAK
DR. ÖĞR. ÜYESİ KEVSER OVAZ AKPINAR
- Overcoming payment behavior challenges: Classifying buy now pay later users with machine learning
Ödeme alışkanlığı zorluklarını aşmak: Makine öğrenimi ile şimdi al sonra öde kullanıcılarını sınıflandırma
ÖMÜR ÖZDOĞAN
Yüksek Lisans
İngilizce
2024
Bankacılıkİstanbul Teknik ÜniversitesiBüyük Veri ve Veri Analitiği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET ALİ ERGÜN