Makine öğrenmesi yöntemleriyle oyun sunucu yükünün tahmin edilmesi
Estimating game server load with machine learning methods
- Tez No: 629777
- Danışmanlar: DOÇ. DR. TANER ÇEVİK
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: İstanbul Aydın Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 149
Özet
Sunucu yükü tahmini kavramı, dağıtık sistemlerde yük dengelemesinde ve yük paylaşımında görülür. Dağıtık sistem uygulamalarında yük tahmini için makine öğrenme yöntemlerinin uygulanması kullanılabilirliği ve performansı artırabilir. Sunucu yükü tahmini için bugüne kadar birçok makine öğrenme yöntemi uygulanmıştır. Bu çalışma, verimli yük dengesi sağlayarak ve ana bilgisayar yük anomalilerini tespit ederken iş yükünü doğru tahmin ederek oyun sunucularının performansını artırmaya odaklanmaktadır. Tahmin için Naif Bayes, Genelleştirilmiş Doğrusal Model, Lojistik Regresyon, Hızlı Büyük Marj, Konvolüsyonel Sinir Ağı, Karar Ağaçları, Random Forest, Gradyan Arttırılmış Ağaçlar ve Destek Vektör Makinesi içeren bir model kurulmuştur. Eğitim aşamasında kullanılan veriler, veri aktarımı ve ağ kullanımı miktarının kapsamlı bir analizi yapılarak üretilmiştir. Analiz aşamasında, kesin kaynak gereksinimlerini ortaya çıkarmak için iyi verimlilik göz önünde bulundurulmuştur. Yüksek doğrulukta performans analizi için çeşitli koşullar altında kapsamlı simülasyonlar gerçekleştirilmiştir. Deneyler, sonuçlarda ortaya çıkan algoritmanın, literatürde bulunan diğer algoritmalara kıyasla yük tahmini açısından ümit verici bir performans sunduğunu göstermektedir.
Özet (Çeviri)
The concept of server load estimation is seen in load balancing and load sharing in distributed systems. Applying machine learning methods for load estimation in distributed system applications can improve availability and performance. To date, many machine learning methods have been applied for server load estimation. This study focuses on improving the performance of game servers by providing efficient load balance and accurately predicting workload while detecting host load anomalies. For the estimation, a model including Naive Bayes, Generalized Linear Model, Logistic Regression, Fast Large Margin, Convolutional Neural Network, Decision Trees, Random Forest, Gradient Enhanced Trees and Support Vector Machine were established. The data used in the training phase was produced through a comprehensive analysis of the amount of data transfer and network usage. In the analysis phase, goodput was taken into consideration to reveal the exact resource requirements. Comprehensive simulations were performed under various conditions for high accuracy performance analysis. The results of the experiments show that the algorithm obtained in the results offers a promising performance in terms of load estimation compared to other algorithms found in the literature.
Benzer Tezler
- New edge computing offloading methods for next generation wireless networks
Yeni nesil haberleşme sistemleri için geliştirilen kenar ağlarda bilgi işlem yük boşaltma yöntemleri
BESTE ATAN
Doktora
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. LÜTFİYE DURAK ATA
- Kişilik, FoMo, dijital bağımlılık ve mutluluk ilişkisinin makine öğrenmesi yöntemleri ile araştırılması
Researching the relationship of personality, FoMo, digital addiction and happiness with machine learning methods
HANDE SARICA KEÇECİ
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes ÜniversitesiYönetim Bilişim Sistemleri Ana Bilim Dalı
DOÇ. DR. ESRA KAHYA ÖZYİRMİDOKUZ
PROF. DR. LALE ÖZBAKIR
- Machine learning-enabled stress detection in children using physiological signals during robot assisted therapy
Çocuklarda makine öğrenmesi ile desteklenmiş robot ile yapılan terapi sırasında fizyolojik sinyallerle stres tespiti
SEVGİ NUR BİLGİN AKTAŞ
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Eğitimi Ana Bilim Dalı
PROF. DR. HATİCE KÖSE
- Coğrafi bilgi sistemleri entegreli makine öğrenmesine dayalı toplu taşınmaz değerleme modelinin geliştirilmesi
Development of mass property valuation model based on geographic information systems integrated machine learning methods
MUHAMMED OĞUZHAN METE
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. TAHSİN YOMRALIOĞLU
- Matrix norm based-solution methods and machine learning: Stochastic games and their applications
Matris norm tabanlı çözüm yöntemleri ve makine öğrenmesi: Stokastik oyunlar ve uygulamaları
MURAT ÖZKAYA
Doktora
İngilizce
2024
Matematikİstanbul Teknik ÜniversitesiMatematik Mühendisliği Ana Bilim Dalı
DOÇ. DR. BURHANEDDİN İZGİ