Geri Dön

Trafik işaretlerinin derin öğrenme ile tespiti ve anlamlandırılması

Perception of traffic lights and sheets with the image processing (deep learning) method

  1. Tez No: 641055
  2. Yazar: HAYATİ AKGÜN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ SİNAN UĞUZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mekatronik Mühendisliği, Mechatronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: Isparta Uygulamalı Bilimler Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Mekatronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Mekatronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 49

Özet

Günümüzde sağlık, askeri, ekonomi ve üretim endüstrisi başta olmak üzere pek çok alanda kullanılan derin öğrenme uygulamaları yapay zekânın önemli bir alanını oluşturmaktadır. Otonom araç teknolojilerinin gelişiminde önemli bir payı bulunan nesne sınıflandırma ve nesne tanıma uygulamaları derin öğrenme çalışmalarının odak noktasını oluşturmaktadır. Hem araçlar hem de yayalar için güvenli sürüş noktasında derin öğrenme modellerine dayanan uygulamaların başarılı performanslar gösterdiği son yapılan çalışmalarda daha net olarak görülmektedir. Otonom sistemlerin güvenli sürüş için trafik işaretlerini yüksek doğruluk değerleri ile tanıması büyük önem taşımaktadır. Özellikle yaya geçidi, okul bölgesi, şehir içi hız limitleri en kritik trafik işaretleri arasında sayılabilir. Bu tez çalışmasında kendi imkânlarımızla elde ettiğimiz trafik işaretlerinden oluşan veri seti kullanılarak önemli nesne tanıma mimarilerinden olan faster R-CNN ile eğitimler gerçekleştirilmiştir. Çalışma neticesinde ortaya konan donanımsal modül sayesinde aracın sürücüsünü sesli ikazlar ile uyaran bir sistem geliştirilmiştir. Geliştirilen donanımsal modül hız limitlerinin yanı sıra yaya geçidi ve okul bölgesi gibi trafik işaretçilerini tespit ederek gerçek zamanlı olarak sürücüyü uyarabilmektedir. Ayrıca geliştirilen yazılım için Python dili kullanılırken, veri seti eğitimleri Tensorflow kütüphanesi kullanılarak gerçekleştirilmiştir. Çalışmanın otonom araç uygulamalarında trafik işaretlerinin tanınması noktasında bir katkı sağlayacağı düşünülmektedir.

Özet (Çeviri)

Deep learning practices used in many fields, in particular, in health, military, economy, and production industries, are an important area of artificial intelligence in our age. The object classification and object recognition applications, which play a significant role in the development of autonomous vehicle technologies, constitute the focal point of the deep learning studies. It is clear that the recent studies based on the deep learning models show that they are useful and successful performances for safe driving not only for vehicles but also for pedestrians. It is very crucial and significant that the autonomous systems recognize the traffic signs with high accuracy for a safe driving. Especially, the pedestrian crossing, school district, urban speed limits can be regarded among the most critical traffic signs. In this study, we have used the data set including the traffic signs obtained by our own means to carry out trainings by using faster R-CNN which is regarded as one of the most important recognition architectures. Thanks to the hardware module produced as a result of the operation, we have developed a system that warns the driver of the vehicle with aaudible warning. The developed hardware module can detect not only the speed limits, traffic signs but also pedestrian crossings and school districts and alert the driver in reel-time. The developed hardware module is based on Arduino and because of the GPS sensor, it can also show the speed of the vehicle. Moreover, we have used Python for the developed software and the dataset trainings have been carried out by using the Tensorflow library. We think that the study will contribute a lot to the recognition of traffic signs for the autonomous vehicle applications.

Benzer Tezler

  1. Traffic signs classification with transfer learning of CNN based models and performance comprasion

    CNN ağları kullanılarak trafik işaretlerinin tespiti ve performans karşılaştırması

    MOHAMMED GHAZİ KHASSAF ALSHAMİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ FEHİM KÖYLÜ

  2. Detection, localization and distance measurement of traffic sign plates with deep learning

    Derin öğrenme ile trafik işaret plakalarının tespiti, yerelleştirmesi ve mesafe ölçümü

    OMAR SHAWQI KHALEEL AL-NOORI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. BURHAN ERGEN

  3. Trafik levhalarının evrişimsel sinir ağları ile tanınması

    Recognition of traffic signs using convolutional neural networks

    BÜŞRA ÖVÜN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. YAŞAR BECERİKLİ

  4. Derin öğrenme yöntemleri ile trafik işareti tanıma

    Traffic sign recognition with deep learning methods

    OKAN YILDIRAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ KAZIM YILDIZ

  5. İmge içeriği tabanlı nesne sınıflandırma

    Image content based object classification

    YEŞİM KALKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Elektrik ve Elektronik MühendisliğiAnkara Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ZİYA TELATAR