Geri Dön

Identifying ct image radiomic biomarkers for predicting immunotherapy response of non-small cell lung cancer patients

Küçük hücreli dışı akciğer kanseri hastalarının immünoterapi cevaplarını öngören radyomik bt görüntü biyoişaretlerinin tespiti

  1. Tez No: 646294
  2. Yazar: İLKE TUNALI
  3. Danışmanlar: DOÇ. DR. ALBERT GÜVENİŞ, PROF. DR. ROBERT J. GILLIES
  4. Tez Türü: Doktora
  5. Konular: Radyoloji ve Nükleer Tıp, Radiology and Nuclear Medicine
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: Boğaziçi Üniversitesi
  10. Enstitü: Biyo-Medikal Mühendislik Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 181

Özet

Kontrol noktası blokajı immünoterapisi (İmT) ileri evre küçük hücreli dışı akciğer kanseri (KHDAK) hastalarının bir kısmında uzun süreli sağkalım gosteriyor. Bununla birlikte, İmT yanıtını yüksek bir başarı ile tahmin edebilen biyobelirteçler halen karşılanamamış klinik bir ihtiyaçtır. Bu tezde, İmT ile tedavi edilmiş KHDAK hastaları arasında ani hastalık progresyonu (AHP) fenotipleri ve sağkalım sonuçlarını öngören yalın modelleri tanımlamak için tedavi öncesi klinik değişkenler ve nicel görüntü-temelli özellikler (yani, Radyomikler) kullanılmıştır. Bu tezin içeriği bağlamında dört çalışma yapılmıştır. İlk olarak, radyal gradyan ve radyal sapma haritalarını kullanan yeni prognostik ve prediktif bilgisayarlı tomografi (BT) radyomik özellikleri oluşturuldu. Bir özellik, RD outside-border SD, iki bağımsız KHDAK kohortunda genel sağkalım ile ilişkili olarak bulundu. İkinci olarak, KHDAK İmT'nin hiper-ani progresyonu (HAD) dahil olmak üzere AHP fenotiplerini öngören klinik-radyomik modeller yaratıldı. Toplam 228 KHDAK hastasında AHP'yi öngörmek için orta ila yüksek kabiliyete sahip (eğri altındaki alanlar: 0.812 ve 0.843) klinik-radyolojik modeller oluşturuldu. Üçüncü çalışmada, akciğer lezyonları kullanılarak stabil ve tekrarlanabilir periferik-tümör ve tümör-içi BT radyomik özellikleri, yanlış bulgu olasılığını azaltmak için tanımlandı. Dördüncü ve son çalışmada, İmT ile tedavi edilen 332 KHDAK hastasının sağkalım sonuçlarına dayanan yalın bir risk modeli tanımlamak için tedavi öncesi klinik değişkenler ve radyomikler kullanılıdı. En öngörücü radyomik özellik (GLCM inverse difference), bir gen ifadesi ve bir immünohistokimya kohortu kullanılarak, CAIX ifadesi ile pozitif olarak ilişkili bulundu.

Özet (Çeviri)

Checkpoint blockade immunotherapy (IO) provides improved long-term survival in a subset of advanced stage non-small cell lung cancer (NSCLC) patients. However, highly predictive biomarkers of IO response are an unmet clinical need. In this thesis, pre-treatment clinical covariates and quantitative image-based features (i.e., Radiomics) were utilized to identify parsimonious models that predict rapid disease progression (RDP) phenotypes and survival outcomes among NSCLC patients treated with IO. As part of the thesis, four studies were conducted. First, novel prognostic and predictive computed tomography (CT) radiomic features utilizing radial gradient and radial deviation maps were created. One feature, RD outside-border SD, was found to be associated with overall survival in two independent NSCLC cohorts. Second, clinical-radiomic models that predicted RDP phenotypes, including hyperprogressive disease (HPD), were created in the setting of NSCLC IO. Among 228 NSCLC patients, parsimonious clinical-radiomic models with modest to high ability (area under the curves: 0.812 and 0.843) to predict RDP were identified. In the third study, stable and reproducible peritumoral and intratumoral CT radiomic features of lung lesions were identified to reduce the chance of spurious findings. In the fourth and final study, pre-treatment clinical covariates and radiomics were utilized to identify a parsimonious risk-model based on survival outcomes among 332 NSCLC patients treated with IO. The most predictive radiomic feature (GLCM inverse difference) was found to be positively associated with CAIX expression, using a gene-expression and an immunohistochemistry dataset.

Benzer Tezler

  1. Orta ve Yüksek riskli prostat kanserlerinde preoperatif dönemde çekilen PSMA-PET radiomik değerleri paralelinde yapay zeka yardımlı olarak cerrahi sonrası biyokimyasal nüks öngörülebilir mi ?

    Can postoperative biochemical recurrence be predictable using artificial intelligence based on radiomic features of PSMA PET/CT in intermediate and high-risk Prostate Cancers during the preoperative period?

    OĞUZHAN ÖZTÜRK

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2025

    ÜrolojiSağlık Bilimleri Üniversitesi

    Üroloji Ana Bilim Dalı

    PROF. DR. CAVİT CEYLAN

  2. Klivusa ait BT tabanlı radiomics özelliklerinden makine öğrenme algoritmaları kullanılarak elde edilen modellerin osteoporoz tanısındaki yeri

    Role of models obtained from ct-based radiomics features and machine learning algorithms of clivus in the diagnosis of osteoporosis

    CANDAN GÜNGÖR

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2022

    Radyoloji ve Nükleer TıpBalıkesir Üniversitesi

    Radyoloji Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ EMRAH AKAY

  3. Medikal görüntü analizinde gürültü saldırılarına karşı derin öğrenme modellerinin performanslarının karşılaştırılması

    Benchmarking of deep learning models against adversarial attacks in medical image analysis

    GÖKÇE OK

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgi Güvenliği Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT DENER

  4. Acil servisteki toraks travması olgularında bilgisayarlı tomografi görüntülerinin raporları ile acil tıp asistanlarının yorumlarının karşılaştırılması

    Comparison of computerized tomography image reports and emergency medicine assistants' comments in thoracic trauma cases in the emergency department

    HİCRET SEMİHA AYDIN ERCAN

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2025

    Acil TıpSağlık Bilimleri Üniversitesi

    Acil Tıp Ana Bilim Dalı

    DOÇ. DR. ABUZER COŞKUN

  5. Segmantation in abdominal medical images

    Karın bölgesine ait tıbbi görüntülerde bölütleme

    AYKUT KOCAOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2007

    Elektrik ve Elektronik MühendisliğiDokuz Eylül Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    Y.DOÇ.DR. GÜLESER KALAYCI DEMİR