Evaluation of alternative maintenance strategies on a complex system in thermal power systems
Termik santrallerde kullanılan karmaşık bir sistem üzerinde alternatif bakım stratejilerinin değerlendirilmesi
- Tez No: 647521
- Danışmanlar: DR. ÖĞR. ÜYESİ DEMET ÖZGÜR ÜNLÜAKIN
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: Işık Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 124
Özet
Son yıllarda, endüstrinin sürekli gelişimi ve sistemlerin karmaşıklığının artması ile bakım politikaları daha önemli hale gelmiştir. Beklenmedik arızalar nedeniyle ortaya çıkan planlanmayan arıza süreleri, hemen hemen tüm endüstri kollarında büyük sorunlara yol açabilir. Ancak, beklenmedik arızaları önlemek için gereğinden fazla bakım yapılması da bakım maliyetlerini önemli ölçüde artırır. Bu nedenle, reaktif ve proaktif bakım sayısının dengelenmesi çok önemlidir. Bu tezin amacı, termik santrallerde olasılıklı grafik modeller olan dinamik Bayes ağlarını (DBN'ler) kullanarak reaktif, koşul bazlı ve proaktif bakım stratejileri kapsamında bakım yöntemleri geliştirmektir. Sistemi modellemek için bileşenler arasındaki yapısal ve stokastik bağımlılıkları formüle etmek için çok etkili olan DBN'ler seçilmiştir. Bu çalışmada, karmaşık bir sistemde alternatif bakım stratejileri iki faktöre dayanılarak değerlendirilmiştir: belirli bir planlama ufkunda toplam bakım sayısı ve toplam bakım maliyeti. Önerilen bakım yöntemleri, aralarında rassal ve yapısal bağımlılıklar olan gizli bileşenlerin bulunduğu çok karmaşık yapıya sahip çok bileşenli bir termik santral sisteminde simüle edilmiştir. Paralel sistemlerin bakım bağımlılıkları ve farklı reaktif bakım maliyetleri dikkate alınarak senaryolar oluşturulmuştur. Sonuç olarak, önerilen tüm bakım stratejilerinin ve yöntemlerinin performansları her senaryo altında karşılaştırılmış ve analiz edilmiş, en iyi bulunan yöntemler açıklanmıştır.
Özet (Çeviri)
In recent years, due to the continuous development of the industry and the rapid increase in the system complexity, maintenance policies have become more important. Unplanned downtimes due to unexpected failures may lead to huge problems in almost all industry branch. However, carrying out maintenance more than the required to prevent unexpected failures increases maintenance cost significantly. Thus, balancing the number of reactive and proactive maintenance is very important. The aim of this thesis is to develop maintenance methods under the reactive, condition-based and proactive maintenance strategies using dynamic Bayesian networks (DBNs) in thermal power plants. DBNs which are are probabilistic graphical models, are selected to model the system because they are very effective to formulate the stochastic and structural dependencies between the components. In this study, we evaluate alternative maintenance strategies on a complex system based on two factors: total number of maintenance and total maintenance cost in a given planning horizon. The proposed maintenance methods are simulated on a multi-component thermal power plant system which has a very complex structure with hidden components among which there are stochastic and structural dependencies. Scenarios are designed considering the maintenance dependability of parallel systems during proactive activities and different reactive cost structures. As a result, performances of all proposed maintenance strategies and methods are compared and analysed under each scenario and the most promising ones are highlighted.
Benzer Tezler
- Gemi makine dairesi bakım işlemlerinin verimlilik analizi
Efficiency analysis of maintenance of ship machinery systems
ÇAĞLAR KARATUĞ
Doktora
Türkçe
2023
Deniz Bilimleriİstanbul Teknik ÜniversitesiDeniz Ulaştırma Mühendisliği Ana Bilim Dalı
PROF. DR. YASİN ARSLANOĞLU
- Sigortacılık sisteminde aktif-pasif yönetimi ve Türkiye hayat sigortası örneğinde portföy performansının boyutlarını belirleyen faktörlerin irdelenmesine ilişkin bir model denemesi
Assets and liablity management in the insurance sector and investigating sectors that are determinating dimensions of the portfolio performance by relating to model testing in the Turkish life insurance sector
ALİ İHSAN DOĞAN
Doktora
Türkçe
2001
SigortacılıkMarmara ÜniversitesiBankacılık Ana Bilim Dalı
PROF.DR. ABDÜLGAFFAR AĞAOĞLU
- Test verilerine dayalı, makine öğrenmesi ve derin öğrenme yöntemleri ile batarya sağlık durumu tahmini
Battery state of health estimation based on test data using machine learning and deep learning methods
MEHMET ALİ ARSLANTAŞ
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. FİKRET ÇALIŞKAN
- Dağıtık veri tabanlarında sorgu optimizasyonu
Query optimization of distributed database systems
BANU TEZEL
- Açık deniz römorkör ve destek gemileri işletmeciliğinin stratejikyönetim modellemesi
Strategic management modeling for offshore tugboat and supportvessel operations
ALİ BURÇİN EKE
Doktora
Türkçe
2025
Denizcilikİstanbul Teknik ÜniversitesiDeniz Ulaştırma Mühendisliği Ana Bilim Dalı
PROF. DR. ÖZCAN ARSLAN