Derin öğrenme yöntemleri kullanılarak osteoporozun belirlenmesi
Determination of osteoporosis using deep learning methods
- Tez No: 652318
- Danışmanlar: DOÇ. DR. MURAT CEYLAN
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: Konya Teknik Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 79
Özet
Osteoporoz, düşük kemik mineral yoğunluğu ile karakterize edilen en yaygın kronik kemik hastalığıdır. Dual Enerji X-Işını Absorbsiyometrisi (DEXA) taraması, kemik mineral yoğunluğunu ölçmek ve osteoporoz tanısı koymak için en sık kullanılan yöntemdir. Ancak, cihazın büyüklüğü ve yüksek maliyeti gibi belirli kısıtlamaları vardır. Standart X-ışınları ve Bilgisayarlı Tomografi (BT) gibi diğer tarama yöntemleri, hastalık ortaya çıkana kadar osteoporozu belirleyemediği için teşhis amacıyla kullanılamaz. Bu çalışmada, topuk kemiğinin x-ışını görüntülerini (düz radyografiler) kullanarak osteoporoz sınıflandırması için invazif olmayan bir yöntem önerilmiştir. Evrişimsel Sinir Ağları ile Veri Arttırma teknikleri ve Transfer Öğrenme Mimarileri, sağlıklı ve osteoporotik hastaların x-ışını görüntülerini sınıflandırmak için birleştirilmiştir. Önerilen yaklaşım ile osteoporozun teşhisi yüksek doğrulukla gerçekleştirilmiştir.
Özet (Çeviri)
Osteoporosis is the most common chronic bone disease, which is characterized by low bone mineral density. Dual Energy X-Ray Absorptiometry (DEXA) scan is the most used method for measuring bone mineral density and diagnosing osteoporosis. Unfortunately, this method has certain limitations, such as the size of the device and it's high cost. Other screening methods like standard X-rays and computed tomography (CT) can't detect osteoporosis until it's fully accrued. In this study, a non-invasive method for osteoporosis classification using X-ray images (plain radiographs) of the heel is proposed. Convolutional Neural Networks along with Data Augmentation techniques and Transfer Learning Architectures are combined to classify X-ray images of healthy and osteoporotic patients. With the proposed approach, diagnosis of osteoporosis has been achieved with high accuracy.
Benzer Tezler
- Tibia plato kırıklarının yazılım algoritması kullanılarak yorumlanma başarısı
Success in interpreting tibia plateau fractures using software algorithm
BURAK ACAR
Tıpta Uzmanlık
Türkçe
2025
Acil Tıpİzmir Katip Çelebi ÜniversitesiAcil Tıp Ana Bilim Dalı
DOÇ. DR. UMUT PAYZA
DOÇ. DR. MEHMET GÖKTUĞ EFGAN
- Derin öğrenme yöntemleri kullanılarak anne sağlığı risk analizi yapılması
Maternal health risk analysis using deep learning methods
BURÇİN YÖNEL ÖNEM
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. HACER KARACAN
- Derin öğrenme yöntemleri kullanılarak demans türü hastalıkların sınıfandırılması
Classification of dementia-type diseases using deep learning methods
RUMEYSA NEGİŞ
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ÖZGÜR KARADUMAN
- Derin öğrenme yöntemleri kullanılarak tornalamada takım seslerinden takım aşınmasının tahmini
Prediction of tool wear from tool noises in turning using deep learning methods
RAMAZAN İLENÇ
Yüksek Lisans
Türkçe
2024
Makine MühendisliğiBatman ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SAVAŞ KOÇ
- Derin öğrenme yöntemleri kullanılarak deepfake medya dosyalarının tespiti
Detection of deepfake media files using deep learning methods
RIFAT KÖSE
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKastamonu ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MURAT MERİÇELLİ