Geri Dön

Gömülü sistem üzerinde derin öğrenme bazlı sürücü yorgunluk tespiti

Deep learning based drivers fatigue detection in embedded system

  1. Tez No: 657201
  2. Yazar: ESRA ÇİVİK
  3. Danışmanlar: PROF. DR. UĞUR YÜZGEÇ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: Türkçe
  9. Üniversite: Bilecik Şeyh Edebali Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 44

Özet

Trafik kazaları, yanlış davranış, dikkatsizlik, ihmal gibi sebeplerin bir araya gelmesi ile oluşmaktadır. Bu kazalar sonucunda can ve mal kayıpları yaşanmaktadır. Dünyadaki trafik kazalarının başlıca nedenlerinden biri sürücünün yorgun ve uykusuz araç kullanmasından kaynaklanmaktadır. Bu nedenle araç içerisinde sürücünün anlık durumu izlenip, yorgunluk tespiti yapılarak kazaların sayısında büyük oranda azalma sağlanabilir. Bunun için gerçek zamanlı çalışan, sürekli olarak sürücüyü izleyen ve yüksek doğrulukla çalışabilen bir sisteme ihtiyaç vardır. Ayrıca, bu sistem araç içerisine yerleştirilebilmesi için gömülü bir cihaz üzerinde çalıştırılabilir olmalıdır. Bu çalışmada, ilgili sorunun çözülebilmesi kapsamında düşük maliyetli gömülü bir cihaz üzerinde gerçek zamanlı çalışan ve derin öğrenme bazlı yüksek doğrulukta performans gösteren yeni bir yaklaşım önerilmiştir. Önerilen sistem, Nvidia Jetson Nano gömülü cihazı üzerinde sürücünün göz ve ağız bölgelerini kullanarak dört farklı durum ile sınıflandırma yapmaktadır. Böylece olası bir kazanın önüne geçilerek can ve mal kaybının minimum seviyeye indirgenmesi hedeflenmektedir.

Özet (Çeviri)

Traffic accidents are occurred by a combination of causes such as misbehavior, carelessness, and negligence. As a result of these accidents, lethal accidents and property loss are experienced. One of the main causes of traffic accidents in the world is due to tired and sleepless driving. For this reason, the instantaneous situation of the driver in the vehicle can be monitored and fatigue can be detected and the number of accidents can be greatly reduced. For this, there is a need for a system that works in real-time, continuously monitors the driver, and can work with high accuracy. In addition, this system must be operable on an embedded device in order to be placed in the vehicle. In this study, a new approach that works in real-time on a low cost embedded device and shows high accuracy based on deep learning is proposed in order to solve the related problem. The proposed system classifies four different situations using the driver's eye and mouth areas on the Nvidia Jetson Nano embedded device. Thus, it is aimed to minimize the loss of life and property by preventing a possible accident.

Benzer Tezler

  1. Sürücü asistan sistemleri için mobil GPU tabanlı gerçek zamanlı durum analizi ve tespit uygulamaları

    Mobile GPU based real-time status analysis and detection applications for driver assistant systems

    EMİN GÜNEY

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    DOÇ. DR. CÜNEYT BAYILMIŞ

  2. Otonom araçlar için gerçek zamanlı nesne tanıma ve uzaklık tahmini sistem tasarım ve uygulaması

    Real-time object recognition and distance estimated system design and implementation for autonomous vehicles

    SALİH PALAMUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERDİNÇ AVAROĞLU

  3. Derin öğrenme ile tekstil tipi tanım

    Fabric classification by using deep learning

    GÖKHAN GÜRGEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ECE OLCAY GÜNEŞ

  4. Ai-based visual odometry implementation on an embedded system

    Yapay zeka tabanlı görsel odometrinin gömülü bir sistemde gerçeklemesi

    OĞUZHAN BÜYÜKSOLAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Savunma ve Savunma Teknolojileriİstanbul Teknik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    PROF. DR. ECE OLCAY GÜNEŞ

  5. Artificial intelligence based android assistant for colorimetric detection

    Kolorimetrik tespit için yapay zeka tabanlı android asistanı

    VAKKAS DOĞAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİzmir Katip Çelebi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. VOLKAN KILIÇ

    DOÇ. DR. MUSTAFA ŞEN