Gömülü sistem üzerinde derin öğrenme bazlı sürücü yorgunluk tespiti
Deep learning based drivers fatigue detection in embedded system
- Tez No: 657201
- Danışmanlar: PROF. DR. UĞUR YÜZGEÇ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: Bilecik Şeyh Edebali Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 44
Özet
Trafik kazaları, yanlış davranış, dikkatsizlik, ihmal gibi sebeplerin bir araya gelmesi ile oluşmaktadır. Bu kazalar sonucunda can ve mal kayıpları yaşanmaktadır. Dünyadaki trafik kazalarının başlıca nedenlerinden biri sürücünün yorgun ve uykusuz araç kullanmasından kaynaklanmaktadır. Bu nedenle araç içerisinde sürücünün anlık durumu izlenip, yorgunluk tespiti yapılarak kazaların sayısında büyük oranda azalma sağlanabilir. Bunun için gerçek zamanlı çalışan, sürekli olarak sürücüyü izleyen ve yüksek doğrulukla çalışabilen bir sisteme ihtiyaç vardır. Ayrıca, bu sistem araç içerisine yerleştirilebilmesi için gömülü bir cihaz üzerinde çalıştırılabilir olmalıdır. Bu çalışmada, ilgili sorunun çözülebilmesi kapsamında düşük maliyetli gömülü bir cihaz üzerinde gerçek zamanlı çalışan ve derin öğrenme bazlı yüksek doğrulukta performans gösteren yeni bir yaklaşım önerilmiştir. Önerilen sistem, Nvidia Jetson Nano gömülü cihazı üzerinde sürücünün göz ve ağız bölgelerini kullanarak dört farklı durum ile sınıflandırma yapmaktadır. Böylece olası bir kazanın önüne geçilerek can ve mal kaybının minimum seviyeye indirgenmesi hedeflenmektedir.
Özet (Çeviri)
Traffic accidents are occurred by a combination of causes such as misbehavior, carelessness, and negligence. As a result of these accidents, lethal accidents and property loss are experienced. One of the main causes of traffic accidents in the world is due to tired and sleepless driving. For this reason, the instantaneous situation of the driver in the vehicle can be monitored and fatigue can be detected and the number of accidents can be greatly reduced. For this, there is a need for a system that works in real-time, continuously monitors the driver, and can work with high accuracy. In addition, this system must be operable on an embedded device in order to be placed in the vehicle. In this study, a new approach that works in real-time on a low cost embedded device and shows high accuracy based on deep learning is proposed in order to solve the related problem. The proposed system classifies four different situations using the driver's eye and mouth areas on the Nvidia Jetson Nano embedded device. Thus, it is aimed to minimize the loss of life and property by preventing a possible accident.
Benzer Tezler
- Sürücü asistan sistemleri için mobil GPU tabanlı gerçek zamanlı durum analizi ve tespit uygulamaları
Mobile GPU based real-time status analysis and detection applications for driver assistant systems
EMİN GÜNEY
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
DOÇ. DR. CÜNEYT BAYILMIŞ
- Otonom araçlar için gerçek zamanlı nesne tanıma ve uzaklık tahmini sistem tasarım ve uygulaması
Real-time object recognition and distance estimated system design and implementation for autonomous vehicles
SALİH PALAMUT
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. ERDİNÇ AVAROĞLU
- Derin öğrenme ile tekstil tipi tanım
Fabric classification by using deep learning
GÖKHAN GÜRGEN
Yüksek Lisans
Türkçe
2019
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ECE OLCAY GÜNEŞ
- Ai-based visual odometry implementation on an embedded system
Yapay zeka tabanlı görsel odometrinin gömülü bir sistemde gerçeklemesi
OĞUZHAN BÜYÜKSOLAK
Yüksek Lisans
İngilizce
2023
Savunma ve Savunma Teknolojileriİstanbul Teknik ÜniversitesiSavunma Teknolojileri Ana Bilim Dalı
PROF. DR. ECE OLCAY GÜNEŞ
- Artificial intelligence based android assistant for colorimetric detection
Kolorimetrik tespit için yapay zeka tabanlı android asistanı
VAKKAS DOĞAN
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİzmir Katip Çelebi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. VOLKAN KILIÇ
DOÇ. DR. MUSTAFA ŞEN