3 boyutlu derinlik kamerası ile derin öğrenme tabanlı güvenli yüz tanıma
Deep learning based secure face recognition with 3d depth camera
- Tez No: 663814
- Danışmanlar: DOÇ. DR. AHMET EMİR DİRİK
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Science and Technology, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 111
Özet
Derin öğrenme ile yüz tanıma teknikleri, son yıllarda çok hızlı gelişim gösteren ve günlük hayatta pek çok alanda uygulaması olan bir araştırma konusudur. Suçluların takip edilmesi, personellerin şirkete giriş çıkış takibi gibi alanlar yüz tanıma sistemlerinin kullanılabileceği alanlardır. Yüz tanıma ile birlikte bir diğer önemli nokta ise yüz tanıma sistemlerine karşı yapılan saldırıların önlenmesidir. Örneğin yüz tanıma sistemleri, vesikalık fotoğraf, yazıcıdan kişinin yüz fotoğraf çıktısının alınması, telefon veya tabletten yüz fotoğrafı, video görüntüleri, maske kullanılması gibi yöntemlerle yanıltılabilmektedir. Bu nedenle başarılı bir yüz tanıma sistemi geliştirmek kadar yüz tanıma sisteminin aldatılmasını önlemek de önemli bir konudur. Bu çalışmada derin öğrenme teknikleri kullanılarak başarımı yüksek bir yüz tanıma sistemi geliştirilmiştir. 3D derinlik kamerası ile derinlik bilgisi analizi ve göz kırpma tespiti yapılarak yüz tanıma sistemlerini yanıltmaya yönelik gerçekleştirilen ataklara karşı güvenliği sağlayan bir sistem geliştirilmiştir. 3D derinlik kamerasından alınan derinlik bilgilerinin gradyeni hesaplanarak genlik ve açı histogramları çıkarılıp bu histogramların ortalama, ortanca ve standart sapma gibi istatistiksel analizi yapılarak kamera karşısındaki kişilerin canlılık tespiti yapılmıştır. Derinlik bilgisine ek olarak karar ağacı regresyonu tekniği kullanılarak göz kırpma tespiti yapılıp sistemin canlılık tespit başarımı arttırılmıştır.
Özet (Çeviri)
Deep learning and facial recognition techniques are a research subject that has developed very rapidly in recent years and has applications in many areas in daily life. Facial recognition systems can be used in areas such as tracking criminals, tracking personnel entry and exit from the company. Another important point along with face recognition is the prevention of attacks against face recognition systems. For example, face recognition systems can be misled by methods such as passport photos, printing a person's face photo from the printer, using a face photo from a phone or tablet, video images, and masks. Therefore, preventing the face recognition system from being deceived is as important as developing a successful face recognition system. In this study, a highly successful face recognition system has been developed using deep learning techniques. A system has been developed that provides security against attacks that are made to mislead face recognition systems by analyzing depth information and detecting blinking with a 3D depth camera. By calculating the gradient of the depth information obtained from the 3D depth camera, amplitude and angle histograms were extracted, and the vitality of the people in front of the camera was determined by performing statistical analysis of these histograms such as mean, median and standard deviation. In addition to depth information, blink detection was performed using the decision tree regression technique and the vitality detection performance of the system was increased.
Benzer Tezler
- Kızılötesi derinlik kamerası ile 3 boyutlu yeniden modelleme
3D reconstruction with infrared depth camera
BERKAN DEMİRCİ
Yüksek Lisans
Türkçe
2019
Elektrik ve Elektronik MühendisliğiNiğde Ömer Halisdemir ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MURAT PEKER
- Depth based calibration of multiple RGBD cameras for full 3D reconstruction
Tam 3B geriçatım için çoklu KYMD kameralarının derinlik tabanlı kalibrasyonu
ESRA TUNÇER ÇALI
Doktora
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİzmir Yüksek Teknoloji EnstitüsüElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. ŞEVKET GÜMÜŞTEKİN
- Derinlik kamerası ile yaşlılarda düşme tespiti
Elderly fall detection with depth camera
MUZAFFER ASLAN
Doktora
Türkçe
2016
Elektrik ve Elektronik MühendisliğiFırat ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MELİH CEVDET İNCE
- Bir endüstriyel robotun insan kolu hareketlerinin derinlik haritası ile algılanmasıyla kontrolü
Teleoperation of an industrial robot arm by analyzing human arm depth image sequences
BURAK MERT
Yüksek Lisans
Türkçe
2016
Makine MühendisliğiTOBB Ekonomi ve Teknoloji ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. YİĞİT TAŞCIOĞLU
- Vi̇sual servo control appli̇cati̇on i̇n a humanoi̇d robot usi̇ng depth-camera i̇nformati̇on
Derinlik kamera bilgisini kullanarak insansı robot'ta görsel servo-kontrol uygulaması
AREZOU RAHİMİ
Yüksek Lisans
İngilizce
2014
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ALİ FUAT ERGENÇ
YRD. DOÇ. DR. PINAR BOYRAZ