Geri Dön

Çok katlı yapılarda deprem etkilerine göre hesabın yönetmelikler açısından değerlendirilmesi

Interpretation of earthqa-uake resistant design procedures of multistorey structures according to various codes

  1. Tez No: 66479
  2. Yazar: LEVENT ÖZDEN
  3. Danışmanlar: PROF. DR. SUMRU PALA
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1997
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Yapı Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 135

Özet

ÖZET Bu tez çalışmasının kapsamında, yapıların deprem hesabı için geliştirilmiş bazı yöntemler, önemli bazı deprem yönetmelikleri ve tipik yapılar üzerinde yapılan incelemeler yer almaktadır. Çalışmanın giriş bölümünden sonraki ikinci bölümünde, yapı sistemlerinin dinamik dış etkilere göre hesabı için geliştirilmiş olan, uygulamada sıkça kullanılan yöntemlere yer verilmiştir. Çalışmanın sonraki bölümlerinde yapılan incelemelerde Modların Süperpozisyonu Yöntemi ve Eşdeğer Statik Deprem Yükü Yöntemi esas olarak kullanılmıştır. Bu nedenle, bu bölümde söz konusu yöntemler üzerinde ağırlıklı olarak durulmuştur. Ayrıca, tanımlarla birlikte hesap yöntemlerinde yer alan kabuller, dinamik problemlere nasıl yaklaşılması gerektiği ve özel bir dinamik problem olan deprem etkisi ve bu etki altında yapının ve zeminin karşılıklı davranışı gibi konulara değinilmiştir. Üçüncü bölümde, önemli Deprem Yönetmelikleri ele alınmıştır. Türkiye'de 1996 'da yayınlanan deprem yönetmeliğinin yanı sıra,“UBC, 1991”Amerikan Deprem Yönetmeliği ve“EUROCODE 8, 1993”Avrupa Birliği Deprem Yönetmeliği Taslağı incelenmiştir. Yönetmelikler incelenirken, daha çok deprem etkisinin hesabına yönelik dinamik ve eşdeğer statik yöntemler üzerinde durulmuş ve yönetmelikler arasındaki hesap yöntemi farklılıkları vurgulanmıştır. Dördüncü bölümde, belirlenen tipik yapılar üzerinde bir“Sayısal Deney”yöntemi uygulanarak, ele alınan üç yönetmelik kapsamında eşdeğer statik ve dinamik hesap yöntemlerinin sonuca olan etkileri ortaya konulmuştur. Bu sayısal deney yöntemi, belirlenen tüm tipik yapılarda, dikkate alınan üç yönetmelik için ve her yönetmelikteki zemin cinsleri için ayrı ayrı uygulanmış ve sonuçlar karşılaştırılmıştır. Daha çok, ABYYHY, 1996 Deprem yönetmeliği ile diğer iki yönetmelik karşılaştırılmış ve farklı görülen noktalan ortaya konulmuştur. Bu farklılıklarda, olumsuz görülen taraflar var ise, bunların giderilmesi için çeşitli öneriler getirilmiş ve yorumlar yapılmıştır.

Özet (Çeviri)

SUMMARY INTERPRETATION OF EARTHQUAKE RESISTANT DESIGN PROCEDURES OF MULTISTOREY STRUCTURES ACCORDING TO VARIOUS CODES Typical methods developed for earthquake design of structures, main important codes on earthquake design and analyses on typical structures constitute the coverage of this thesis. Following the first introduction chapter, in the second chapter typical methods which are developed to design structural systems under external dynamic effects, available in literature and frequently used in everyday applications are covered. Among these methods, mainly Mode-Superposition Procedure and Equivalent Static Earthquake Load Method are taken into consideration. The reason for the latter is that, the studies conducted in the subsequent chapters are directed to the comparison of the codes and the results obtained from these design methods applied on typical structures. Besides, along with the definitions the assumptions made in these methods, appropriate ways to approach the dynamic problems, and the special dynamic problem of earthquake effect and the soil-structure interaction under this effect are emphasised. Third chapter is devoted to the Codes on Earthquake Design. In this chapter, besides“ABYYHY, 1996”Turkish Code on Earthquake Design that was published in 1996,“UBC, 1991”Uniform Building Code on Earthquake Design and“EUROCODE 8, 1993”Earthquake Resistant Design of Structures are analysed. In analysing these codes, mainly the dynamic and equivalent static procedures which are directed to the calculation of earthquake loads are taken into consideration. Additionally the disparities between the design methods given in each code are indicated. Finally, in the fourth chapter, by means of applying the“Numerical Experimentation”method on the predetermined typical structures in accordance with the considered three codes effects of the equivalent static and dynamic design procedures on the final results are displayed. The numerical experimentation method is applied to all of the predetermined typical structures separately for each three codes and the soil types given in each code. Accordingly, the obtained results are compared. Mainly ABYYHY, 1996 is compared with the other two codes and the xixdisparities are pointed out. If there are some negative aspects determined in these disparities then various suggestions are put forward and comments are indicated. For each soil type, earthquake designs of the typical structures selected for this study are made using both equivalent static procedures and the dynamic procedures that are recommended in the codes. Primarily, analyses are made using Equivalent Static Earthquake Load Procedures and design moments, Ms, are calculated for each critical section. Then the same examples are resolved using Mode-Superposition Procedure which is a dynamic method recommended in the specifications and Md, design moments, are calculated. The ratio of the bending moments obtained from the equivalent static force procedures, and the from dynamic design, at any section, is named as“Static Safety Factor”(abbreviated as SGK). SGK = MD Calculated SGK values, together with their mean values (SGKmean) and standard deviations (SS) form the basis of comparison of the considered methods. This ratio being greater than 1, reveals the reliability of the Equivalent Static Earthquake Load Method. Values smaller than 1 indicate that Equivalent Static Earthquake Load Method is not reliable enough. SGK values calculated for the columns and beams are the weighted mean values, given in the following equation which are calculated for the overall structure. 2>. SGKm“”“ = Zmd Standard deviations (SS) of SGK values calculated for each section are calculated as given in the following equation. ”o2_HMD(SGK-SGKmeany Hmd xxCalculated standard deviations give way to figure out the amount of deviation of the obtained safety factors at each and especially critical sections of the structure from the mean value. In order to comprehensively analyse various types of structures that are encountered with in everyday applications and classified in the codes, specific“Typical Structures”are selected. These typical structures are; 1. Simple frames, 2. Frames with rigid columns, 3. Frames with constant rigidity columns, 4. Shear walls, 5. Shear walls with openings, 6. Structures with shear walls and frames (Dual Systems) Each typical structure is arranged in 8,16 and 24 storeys. Earthquake design of each typical structure will be made for every separate soil condition given in the codes and the results will be evaluated. In ABYYHY,1996 Code, it is revealed that for all the structures obtained SGK values come out to be greater than 1, but vary within a quite wide range of the 1.16 to 1.94. Average mean SGK value is calculated to be 1.30, and its standard deviation is calculated as 0. 1 1. Generally SGK values increase as the number of storeys increase, namely for the structures having greater natural period. The main reason of the latter is the base limit value of 0.7 given in the code for the Spectrum Factor, S. For the structures having big periods, S value is obtained to be smaller than 0.7 for some soil types. In case S=0.7 base ümit value is used, Equivalent Static Earthquake Loads increase but design moments calculated by Mode Superposition do not change as Acceleration Spectrum Diagram that is used for this method does not have a base limit. Such a condition, however, results in the increase of SGK values for some structure types and soil classes. xxiSGK values obtained for typical structures are given as a whole in Fig. 4.9. Here, averages of column and beam values are taken and along the horizontal axis corresponding SGK values of each structure type for each soil condition is queued up. 2.00 1.50 - 1.00 ? ? RD4 o o o + + + NJ=. DD O O B İ + + F.W.C.C. 98° + + F.WJLC. + + + S.W. ++- W.W.O. 0 + + o ? + + D.S. + 8 STOREYS o 16 STOREY D 24 STOREY Fig. 4.9 Distribution of SGK Values Under the Conditions of ABYYHY, 1996 In conclusion, Equivalent Static Earthquake Load Method when code principles are considered generally gives reliable results. On the other hand, especially for the structures having big natural periods belonging to the first mode, safety factors increase. To prevent such a condition, when the conducted studies are considered, acceleration spectrum diagrams utilised for both methods need to be identical. The calculations made in accordance with UBC, 1991 reveal that for all structures obtained mean SGK values are greater than 1, but range between 1.00 to 1.89. Average of mean SGK values is calculated as 1.22, and that of standard deviation is calculated as 0.14. Overall SGK values calculated for typical structures are given in Fig. 4.14. xxii2.00 1.50 - 1.00 DDDD o o, N.F. o o u -*- F.W.C.C. F.W.R.C. D o a + l l I S.W. D o n + + + W.W.O. Q + D D + °o + D.S. + 8 STOREYS o 1 6 STOREY a 24 STOREY Fig, 4.14 Distribution of SGK Values Under the Conditions of UBC,1991 Similarly, the SGK values obtained from the calculations made in accordance with EUROCODE 8, 1991 come out to be greater than 1. The values are distributed in a wide range between 1.20 and 3.80. Average of mean SGK values, and standard deviation are calculated to be 2.00 and 0.68, respectively. This quite high value obtained for standard deviation is the indicator of the SGK values being distributed in a wide range. The determined main reason of big SGK values is the base limit value of 0.20ag/g given in the EUROCODE 8, 1993 code for Spectrum Diagram. When such a high base limit value and also high values of spectrum coefficients in high periods are used, design moments obtained from Equivalent Static Earthquake Loads Procedure increases, whereas,design moments obtained from Mode Superposition Procedure do not change as the Acceleration Spectrum Diagrams used for this method does not have a base limit and have lower spectrum coefficients. Such a case results in the increase of SGK values for some structure and soil types. SGK values calculated for the typical structures are gathered in Fig. 4.19. xxm+ 8 STOREYS o 16 STOREY d 24 STOREY Fig, 4.19 Distribution of SGK values under the condition of EUROCODE 8, 1993 Finally, as a comparison of considered codes, SGK values obtained for each three code are gathered in Fig. 4.20. SGK values calculated in accordance with ABYYHY, 1996; UBC, 1991 and EUROCODE 8, 1993 and averaged for each soil type are queued up along the horizontal axis. + 8 STOREYS o 16 STOREYS a 24 STOREYS Fig, 4.20 Distribution of SGK Values For All Codes Considered XXIV

Benzer Tezler

  1. Relationship between the seismic resistance capacity and the expected total life-cycle environmental impact of an RC building

    Betonarme bir binanın deprem dayanımı ve kullanım ömrü boyunca ortaya çıkan toplam çevresel etki arasındaki ilişki

    MEHMET ORUÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Deprem Mühendisliğiİstanbul Teknik Üniversitesi

    Deprem Mühendisliği Ana Bilim Dalı

    DOÇ. DR. UFUK YAZGAN

  2. Betona gömülü çelik kompozit kolonlar ile teşkil edilmiş çok katlı yapıların davranışının çok modlu doğrusal olmayan analiz yöntemi ile incelenmesi

    Non-lineer analysis of the behavi̇or of multi-story concrete encased steel composite moment resisting frame using multi-mode push

    MERVE ÇALIŞKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    İnşaat MühendisliğiEge Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. BENGİ ARISOY

  3. A3 türü düzensizliğe sahip betonarme bir yapının DBYBHY-2007 ve TBDY-2018 esaslarına göre incelenmesi

    A concrete building with A3 type of irregularity investigation according to DBYBHY-2007 and TBDY-2018

    FURKAN ŞİMŞEK

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. TÜLAY AKSU ÖZKUL

  4. A3 düzensizliği olan çok katlı betonarme bir yapının Türk, Eurocode ve ACI 318 yönetmeliklerine göre tasarımı

    Design of a multistorey reinforced concrete building with A3 irregularity according to Turkish, Eurocode and ACI 318 regulations

    SAADET GÖKÇE GÖK

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. TÜLAY AKSU ÖZKUL

  5. Çok katlı çelik çerçeve sistemde deprem performansının belirlenmesi üzerinde sayısal bir inceleme

    A numerical study on performance-based seismic evaluation of multistorey steel buildings

    EMRE CENGİZOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF.DR. ERKAN ÖZER