Sürtünme katsayısı yöntemi ile tekstil yüzeylerinin analizi
The Textile materials analysis with frictional coefficient methods
- Tez No: 66807
- Danışmanlar: PROF. DR. YÜKSEL YILMAZ
- Tez Türü: Yüksek Lisans
- Konular: Tekstil ve Tekstil Mühendisliği, Textile and Textile Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1997
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Tekstil Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 84
Özet
ÖZET Bu çalışmada, tekstil yüzey özelliklerinin sürtünme katsayısı ile bağlantısının olduğu düşünülerek, bu konuda şimdiye kadar yapılan araştırmalar gözden geçirilmiştir. Tekstil sektöründe dünyada söz sahibi olan ülkemizde böyle bir araştırmanın ilk olması ise konuya ışık tutması açısından önemlidir. Bu amaçla, tekstil yüzeylerinde sürtünme katsayısının tespitine yarayan ve deney düzeneğinde sonuçlan etkileyecek faktörlerin en aza indirildiği bir cihazın tasarımı yapılmıştır. Bu cihaz başlıca; eğik düzlem, elektronik kontrol ve kumanda devresi, tahrik mekanizması, motor tur sayısı göstergesi ve ortam koşullan denetleyicilerinden oluşmaktadır. Tekstil yüzeylerinin sürtünme katsayısı ile olan ilişkisi eğik düzlem teorisi esasına dayandırılmıştır, yani eğik bir düzleme yerleştirilen kumaşın üzerinden ağırlığı belli bir tahta bloğun kaymaya başladığı açı tespit edilmiş ve bu açı yardımı ile sürtünme kuvveti ve sürtünme katsayısı hesaplanmıştır. Dizaynı gerçekleştirilen bu cihazda yünlü dokuma kumaşlar ağırlıkta olmak üzere 500' e yalan deney yapılmış ve bu yüzeyler için kayma açılan tespit edilmiştir. Klasik sürtünme kuvveti formülü olan F=u*N formülünün, uygulanan normal kuvvetteki artış ile deformasyona uğrayan kumaş gibi malzemeler için geçerli olmadığı ispatlanmıştır. Yumuşak ve deforme olabilen yüzeylerde F=a*N° geometrik orantılı formül kullanılmış ve Lineer regresyon uygulanarak flanel ve serj tipi kumaşlarda a ve n katsayıları hesaplanmıştır. Pilling test sonuçlan bilinen numunelerin kayma açılan tespit edilmiş ve pilling sonuçlan grafikle kıyaslanmıştır. Çeşitli apre kademelerinde bulunan, farklı hammadde kullanılan ve farklı desenli kumaşların kayma açılan ile kumaşın özellikleri arasındaki ilişki tespit edilmiştir. Kumaşın atkı ve çözgü yönündeki sürtünme kuvveti kıyaslanarak, grafiklerle ifade edilmiştir. Çalışmada elde edilen sonuçların, önceden yapılan araştırmalarda bulunan sonuçlarla uyumlu olduğu görülmüştür.
Özet (Çeviri)
f THE TEXTILE MATERIALS ANALYSIS WITH FRICTIONAL COEFFICIENT METHOD SUMMARY The frictional properties of yarn and fibres have proved importance at all in the manufacture of textiles. Friction is also of importance in determining the properties of finished products such as the breaking strength, and elastic properties of yams and fabrics, the“handle”, tear strength abrasion resistance and stability of structures of fabrics. It is for these reasons that investigations about frictional behaviour of textile materials have been undertaken. Smoothness, softness and stiffness determine the physical and mechanical behaviour of a fabric and the subjective assessment of quality when it is handled. A fabric that compresses easily is likely to be deemed soft and to possess a low compression module and high compression module and high compression. A fabric that bends easily is likely to be described a flexible, i.e., not stiff, and such a fabric will possess a low bending module and high flexion. Any fabric that offers little frictional resistance to motion across its surface and possesses a low coefficient of friction is likely to be described as a smooth fabric. In this investigation, the results of the tests are compared with the same features of the fabric as a design, the raw material of the yarn, the finishing parameters, slip direction, which can be weft or warp direction, the pilling tests' results and the behaviour of the friction coefficient by changing of the normal force. Inclined method was used to determine the frictional coefficient of fabric. In this method one of the edge is hinged to the main box platform, was used to have incline surface. As shown in Figure 1 the screw which always raises vertical from the edge of the surface of the main box, drives the platform downwards and upwards by pushing the platform from the back side. 25g weighted wooden block is put on the fabric and than test can be started. Until the wooden block slipped, the platform is moved upwards and in the mean while screw's turn is counted and displayed. When the motor was stopped by wooden block, the counted turn noted and the slip angle could be calculated from XIn= the number of the turn h= 1.5 mm (screw step) All the comparison was done by using calculated slip angles. Platform. Motor Figure 1 Main motion system Friction is defined as the force resisting relative motion between two bodies in contact. There are two classical laws of friction for solid surfaces in contact. These laws of friction have been ascribed to the French scientist Amontons, who stated them in 1699. The first law states the frictional force F is proportional to the load N acting perpendicular to the surfaces. F=u*R The proportionality constant u. is called the coefficient of friction. The second law states that the frictional force is independent of the geometric area of contact of bodies that are sliding on each other. Amontons' laws are valid only under special circumstances. They hold fairly well for metals, ice, and other hard materials, but fail for textile fibres, yarns and fabrics. The coefficient of friction is constant for many hard materials, but is generally not constant for textiles. Also, when textiles are involved, the frictional forces usually dependent on the geometric area of contact. F=a*N“ where F is frictional force, N is the normal force, a is a coefficient (equal to u. only when n=l), and n is the friction index. This empirical frictional is now generally accepted for textile materials. The friction index varies from material to material depending on geometry of the aspirates covering the surfaces and the nature of the deformation that the surfaces undergo. The Figure 2 showed the test results for different materials and different normal force. Both the theoretical analysis and the experimental results showed clearly that apparent contact area is important in fabric frictional characteristic and that Amontons' law fails for most of the fabrics studied. XII3. 20 25g - -FLANB. - TBFLANH. -GABARDN2/1 ?O - GABARDİN 2/2 -* - SATBI -® - CANNETTA -ft - ”COVB?TBYAZLK - - YAZLK ?-» STRCEK -« - SBÎJ22.5150g Nonxal force 75g Figure 2 Allocation of normal force and slip angle for different fabrics Plats of Ln(F/N) (frictional force Per unit apparent area) versus Ln(N/A) (normal force Per unit apparent area) showed a linear relationship. Thus Wilson was able to closely correlate the data using the relationship Ln(F/A) =C+ n*Ln(N/A) where is the slope of the straight line and C is intercept of the Ln(F/A) axis. This equation could be used to correlate the data. A linear regression analysis was performed to calculate values of n and C to determine the closeness of the fit. The linear regression analysis was done for type of the flanel and serj fabrics, n and C constant were found; For flanel n=0.8803322, C=-0.520395 Ln(F/A)= -0.520395 + 0.8803322 * Ln (N/A) F/A=0.59428575*(N/A)08803322 (3) (4) For serf n=0.8264166, C=-0.35 1470325 Ln(F/A)= -0.351470325+ 0.826416636* Ln (N/A) (5) F/A=0.70365273*(N/A)0826416636 (6) XUlThe results of pilling tests of the fabrics were compared with slip angle. Flanel and serj samples' pilling test results were taken from YÜNİSAN A.Ş. factory and these samples were used in these experiments. In Figure 3 showed that 21 degree for 75g normal force has three different pilling results these are 2.5 (bad), 3 (normal) and 4 (good). This means the test results showed that there is no relationship between pilling result and the slip angle. Figure 3 Allocation of pilling result and slip angle for serj fabric The frictional force is related with the apparent area of contact that frictional force should depend on fibre diameter. It has been mentioned by Martin and Mittelman that noted an increase in the coefficient of friction of wool and mohair with increase in fibre diameter. [6] In this investigation for serj fabrics several wool raw materials (22u,, 22.5 u, and 22u +Ukrayna poor quality wool) were used in production. When the diameter of wool fibre is increased, the frictional force decreases. It could be find out in Figure 4. This investigation has shown that the frictional resistance of fabrics woven from filament yarns is dependent on both rubbing direction and fabric morphology. The frictional force is highest when the direction of motion of the moving wooden block is perpendicular to the orientation of the axis of the dominating peaks of the fabric ; it is the lowest if the direction of motion is parallel to the orientation of the axis of the dominating peaks of the base fabric. The fabric of flanel that has different finishing process part, was compared with each other in Figure 5. The samples are just woven, fabric dyed, fibre dyed and become matted fabrics. The results of the tests show that when the fabric is being passed the finishing process it becomes softer and friction coefficient decreases. XIV20.0 25g -Serj22 -Serj22+UK - * - Serj 22.5 50g Normal force 75g Figure 4 Allocation of normal force and slip angle for different raw material 25g 50g Normal force 75g Figure 5 Allocation of normal force and slip angle for different finishing part All kind of fabrics have different slip angle i.e. fiictional coefficient. Because the fiictional coefficient could be effected by a lot of factors like finishing process, yarn properties, design shape, raw material etc. On the other hand the same type of fabrics would have different fiictional coefficient because raw material properties and finishing properties could not be the just same, but we can assume they are approximately the same. So, only the same type of fabrics could be compared with each other after that the physical properties could be decided. Reference fabrics that slip angles and properties were known had been chosen to the comparison with the samples. After experimental investigations, the samples' properties could be decided according to the reference fabric. XV
Benzer Tezler
- Nanofibrous resonant membrane for acoustic applications
Akustik uygulamalar için nanolifli resonant membran
MERVE KÜÇÜKALİ ÖZTÜRK
Doktora
İngilizce
2017
Tekstil ve Tekstil Mühendisliğiİstanbul Teknik ÜniversitesiTekstil Mühendisliği Ana Bilim Dalı
PROF. DR. FATMA BANU NERGİS
PROF. DR. CEVZA CANDAN
- Pulcuksuz yünlü kumaşın sürtünme özelliklerinin iplik çekme (yarn pull-out) yöntemi ile belirlenmesi
Determination of the frictional properties of descaled wool fabric with yarn pull-out method
GÜLHAN GÜLER
Doktora
Türkçe
2016
Tekstil ve Tekstil MühendisliğiErciyes ÜniversitesiTekstil Mühendisliği Ana Bilim Dalı
PROF. DR. ABDULKADİR BİLİŞİK
- Tek kullanımlık bakım ve hijyen ürünlerinin performans özelliklerinin arttırılması üzerine bir çalışma
An investigation about improving performance properties of disposable personal hygienic products
AYÇA AKSOY
Yüksek Lisans
Türkçe
2012
Tekstil ve Tekstil MühendisliğiSüleyman Demirel ÜniversitesiTekstil Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. SİBEL KAPLAN
- Tekstil terbiye işlemlerinde nanokitosan kullanımı
Nanochitosan usage on textile finishing applications
MERVE TÜREMEN
Yüksek Lisans
Türkçe
2017
Tekstil ve Tekstil MühendisliğiEge ÜniversitesiTekstil Mühendisliği Ana Bilim Dalı
DOÇ. DR. ASLI DEMİR