Geri Dön

Yapay sinir ağı kullanarak müşteri memnuniyeti analizi

Customer satisfaction analysis using artificial neural network

  1. Tez No: 676841
  2. Yazar: YUNUS EMRE ARAÇ
  3. Danışmanlar: DR. ÖĞR. ÜYESİ AHMET GÜRHANLI
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: İstanbul Aydın Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 71

Özet

Günümüz teknolojilerinde en önemli merak konularından biri ileriyi tahmin etmek olmuştur. Bu konuda birçok çalışma makine öğrenmesi üzerine yoğunlaşmıştır ama doğrusal olmayan durumlarda klasik makine öğrenmesi yöntemleri yeterli gelmemiştir. Yapay sinir ağları da eldeki verilerden yola çıkarak tahminler yapabilmemize olanak sağlayan bir sistem olarak hayatımıza girmiştir. Müşteriye yönelik çalışan tüm kuruluşların daha fazla müşteri kazanabilmek ve var olan müşterilerini ellerinde tutabilmek için müşterilerinin memnuniyetlerini öğrenmeleri gerekmektedir. Bu memnuniyet durumu içine sadece nesnel veriler değil insan duyguları da girebileceği için doğrusal bir denklem oluşturulamamaktadır. Eldeki veriler iyi analiz edilerek, yeni gelecek müşteriler için de doğru kararlar verilip onların kalıcılığının arttırılması gerekmektedir. Klasik makine öğrenmesi bu tür bir uygulamada yetersiz kalmaktadır, ancak otomatik olarak eğitilen ve doğrusal olmayan bileşenler içeren yapay sinir ağları doğruluğu yüksek sonuçlar verebilmektedir. Yapay sinir ağları sayesinde doğrusal olmayan denklemler kurularak bu uygulamalara yönelik tahminlerin en iyi şekilde yapılması amaçlanmaktadır. Son yıllarda yapılan karşılaştırmalar ve çalışmalar da yapay sinir ağlarının klasik makine öğrenmesi yöntemlerine göre doğrusal olmayan durumlarda daha iyi sonuç verdiğini göstermektedir. Bu çalışma da derin öğrenme ile müşteriler üzerinde memnuniyet analizi ve tahmini yapılırsa daha iyi sonuçlar alınabileceğini ortaya koymaktadır. Bu makalede bir yapay sinir ağında bu uygulama özelinde karşılaşılan durumlar raporlanmaktadır. Çalışmamız müşteri memnuniyet analizi için ağdaki parametrelerin nasıl ayarlanması gerektiğini belirtmekte ve farklı algoritma seçimlerinin nasıl sonuç verdiğini göstermektedir.

Özet (Çeviri)

One of the most important curiosity issues in today's technologies has been to predict the future. Many studies have focused on machine learning, but in nonlinear cases, classical machine learning methods are not enough. Artificial neural networks have entered our lives as a system that allows us to make predictions based on the available data. All organizations working for the customers need to learn the satisfaction of their customers to gain more customers and keep their existing customers. A linear equation cannot be created for this satisfaction, since not only objective data but also human emotions can be introduced. By analyzing the data well, it is necessary to make the right decisions for new future customers and increase their permanence. Classical machine learning is inadequate in this kind of practice, but automatically trained neural networks that include non-linear components can give results having high accuracies. Non-linear equations are established by means of artificial neural networks and it is aimed to make the best estimates. In recent years, comparisons and studies have shown that artificial neural networks give better results in nonlinear cases compared to classical machine learning methods. This study shows that better results can be obtained if satisfaction analysis are conducted on customers using deep learning methods. In this paper, situations encountered in this application which is using an artificial.

Benzer Tezler

  1. Development of deep learning-basedsentiment analysis approaches withneural network-based languagemodels

    Sinir ağı tabanlı dil modelleriyle derin öğrenme tabanlı duygu analizi yaklaşımlarının geliştirilmesi

    KHADIJA MOHAMAD

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. KÜRŞAT MUSTAFA KARAOĞLAN

  2. Veri madenciliği teknikleri ile hava yolu firmalarının tweetleri üzerinden duygu analizi

    Sentiment analysis through tweet of airway companies with data mining techniques

    FATİH AYKUL

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBurdur Mehmet Akif Ersoy Üniversitesi

    Yönetim Bilişim Sistemleri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MELİKE ŞİŞECİ ÇEŞMELİ

  3. Yapay sinir ağı ile havalimanı yolcu sayısı tahmini ve bazı tahminleme yöntemleri ile karşılaştırmalı analiz

    Airport passenger number prediction using artificial neural network and comparative analysis with some forecast methods

    DİDEM ARI

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Endüstri ve Endüstri MühendisliğiManisa Celal Bayar Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. PINAR MIZRAK ÖZFIRAT

  4. Otomatik para çekme makinelerinde (ATM) nakit para yönetimi için optimizasyon yaklaşımlarının geliştirilmesi

    Development of optimization approaches for cash management in automatic teller machi̇nes (ATM)

    ALİ TUNÇ

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞAKİR TAŞDEMİR

  5. Order dispatching via deep reinforcement learning

    Başlık çevirisi yok

    ERAY MERT KAVUK

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AYŞE TOSUN KÜHN