GPU programlama ile büyük kütleli yıldız oluşum bölgelerinin spektral analizi
Spectral analysis of massive star forming region by GPU programming
- Tez No: 704317
- Danışmanlar: DOÇ. DR. SELÇUK SEVGEN, PROF. DR. PETER SCHILKE
- Tez Türü: Doktora
- Konular: Astronomi ve Uzay Bilimleri, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Astronomy and Space Sciences, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: İstanbul Üniversitesi-Cerrahpaşa
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 106
Özet
Astronomi, çok büyük boyutlu veriler ile çalışmak zorunda olan bir bilim dalıdır. Bu verilerin işlenmesi ve bilgi çıkarımı çok uzun zaman aldığı için bu verileri modelleyen bilgisayar yazılımlarının performansı çok önemlidir. Tez kapsamında gerçekleştirilen ilk çalışmada, ALMA'dan elde edilen verileri modellemek amacı ile Köln Üniversitesi tarafından geliştirilen XCLASS'ın hesap yoğun kısımları, GPU programlama tekniği ile hızlandırılmıştır. Galaksideki en büyük ve karmaşık büyük kütleli yıldız oluşum bölgelerinden biri olan, Sagittarius B2 adlı bölgeden elde edilen spektral veriler ile, XCLASS'ın CPU ve GPU versiyonları test edilmiş, performansları karşılaştırılmıştır. Elde edilen sonuçlar, GPU programlama tekniğinin, büyük boyutlu astronomik verilerin modellenmesinde kullanılan yazılımlarda yüksek performans kazancı sağladığını göstermiştir. Gökyüzünden alınan verilerden elde edilen spektral verilerde bulunan her bir çizginin varlığının ve yükseklik, frekans, genlik gibi parametrelerinin tespiti, hangi molekül, atom veya bileşenlerden oluştuğunun belirlenmesi, bölgenin yapısının çıkarılması çok önemlidir. Tez kapsamında gerçekleştirilen ikinci çalışmada, XCLASS'a entegre edilmek üzere SgrB2 adlı bölgeden elde edilen spektral verilerdeki tespit edilmesi zor olan, iç içe geçmiş çizgilerin tespiti işlemi için Otomatik çizgi tanıma yazılımı geliştirilmiştir. Gauss paketi içerisinde AGD yazılımı ile aynı verilere ait spektral çizgilerin tespiti işlemi gerçekleştirilmiş ve başarı oranları karşılaştırılmıştır. Elde edilen sonuçlar, Otomatik Çizgi Tanıma yazılımının spektral çizgilerin tespiti işleminde daha iyi sonuçlar sunduğu görülmüştür. Bu kadar büyük ve karmaşık bir alandan elde edilen verilerin başarılı bir şekilde analiz edilmesi, evrenin farklı bölgelerinde de analiz yapılabileceği anlamına gelecektir, böylece karanlık evrenin fiziksel ve kimyasal yapısı hakkında daha fazla bilgi edinmek mümkün olacaktır.
Özet (Çeviri)
Astronomy is a science that has to work with very large data. Since processing of these data and extracting useful information from these data take a long time, the performance of software that models these data is very important. In the first study conducted within the scope of this thesis, compute-intensive parts of XCLASS, developed by the University of Cologne to model the data obtained from ALMA, have been accelerated by using GPU programming technique. CPU-GPU versions of XCLASS have been tested on the spectral data obtained from star formation region SgrB2 which has a mass of about 3 million of the solar mass and is one of the largest and complex high mass star formation regions and performance comparison have been made. The results show that GPU programming technique provides significant performance gain in software used for modeling large scale astronomical data. Determination of existence and parameters such as height, frequency and amplitude of each line in the spectral data obtained from the sky has great importance for determination of the structure of the region. In the second study conducted within the scope of this thesis, Automatic Line Identification software has been developed for detection of nested lines in the spectral data obtained from SgrB2 to be integrated into XCLASS. Spectral lines of the same data have been determined by using AGD algorithm in Gaussian package and the success rates have been compared with Automatic Line Identification software. The results show that the Automatic Line Identification software is successful on detecting of spectral lines. Successful analysis of large and complex area means that analysis can be made in different parts of the universe, thus, it will be possible to learn more about the physical and chemical structure of the dark universe.
Benzer Tezler
- Çelik çerçeve sistemlerin GPU tabanlı optimizasyonu
GPU based optimization of steel frame structure
TEVFİK OĞUZ ÖRMECİOĞLU
Yüksek Lisans
Türkçe
2019
Mühendislik BilimleriAkdeniz Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. İBRAHİM AYDOĞDU
- Enhancing virtual reality musical instrument design: Solving software topology problems with VRMI Creation Toolkit
Sanal gerçeklik müzik enstrumanı tasarımının iyileştirilmesi: Yazılım mimarisi sorunlarının VRMI Creation Toolkit ile çözümü
OZAN SARIER
Doktora
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiMüzik Ana Bilim Dalı
PROF. DR. CAN KARADOĞAN
- CUDA ile paralel programlama
Parallel programming with CUDA
PELİN KARAGÖZOĞLU
Yüksek Lisans
Türkçe
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. AYLİN KANTARCI
- Grafik işlemci birimi üzerinde genel amaçlı hesaplama yöntemi ile görüntülerin gerçek zamanlı ortorektifikasyonu
Real time orthorectification of images by general purpose computation on graphical processing units method
HAKAN ŞAHİN
Doktora
Türkçe
2016
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET SITKI KÜLÜR
- CPU-accelerated earthquake simulations for large scale urban cities
Büyük ölçekli şehirler için CPU ile hızlandırılmış deprem simulasyonları
MERT UYSAL
Yüksek Lisans
İngilizce
2019
Deprem Mühendisliğiİstanbul Teknik ÜniversitesiDeprem Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ZEYNEP DEĞER
DOÇ. DR. GİAN PAOLO CİMELLARO