Geri Dön

Novel software defect prediction method based on PCA and optimized LSTM

PCA ve optimize edilmiş LSTM'ye dayalı yeni yazılım kusur tahmin yöntemi

  1. Tez No: 704884
  2. Yazar: ANMAR SADEQ JASIM AL-OBAIDI
  3. Danışmanlar: PROF. DR. ALOK MISHRA, PROF. DR. ALİ YAZICI
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 71

Özet

Bu çalışmada, PCA tabanlı LSTM uygulayarak yazılım hatası tahmini için yeni bir yaklaşım sunulmuştur. Bu çalışma, PCA tarafından gerçekleştirilen özellik seçimi ve LSTM tarafından yürütülen sınıflandırma bölümünden oluşmaktadır. PCA'Nin öznitelik seçimi olarak uygulanmasının amacı, etkilenmeyen öznitelikleri kaldırarak hesaplama süresini azaltmak için girdi özniteliklerinin boyutunu küçültmektir. Ardından, PCA'Nin çıkışı, giriş yazılımı kusur özelliklerini iki sınıfa (kusurlu ve normal) sınıflandıran zaman serisi sınıflandırıcısı olan LSTM'ye bağlanır. En iyi doğruluğu elde etmek için LSTM'nin ağırlığını ve tabanını güncelleyerek LSTM'nin performansını optimize etmek için uygulanan PSO. Elde edilen sonuçlar bu alanda sunulan yaygın çalışmalarla karşılaştırılmıştır.

Özet (Çeviri)

In this thesis, new approach presented for software defect prediction applying PCA based LSTM. This study consists from two parts feature selection executed by PCA and classification part executed by LSTM. The aim applying PCA as feature selection is to reduce the size of input features to decrease the computation time by removing unaffected features. Then, the output of PCA wired to the LSTM that is time series classifier which classify the input software defect features to the two classes (defect and normal). The PSO applied to optimize the performance of the LSTM by updating the weight and basis of the LSTM to obtain best accuracy. The obtained results compared with common studies presented in this field.

Benzer Tezler

  1. A new method for software defect prediction based on optimized machine learning techniques

    Optimize edilmiş makine öğrenim tekniklerine dayalı yazılım kusurlarını öngörmek için yeni bir yöntem

    SHAHO ISMAEL HASSEN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtılım Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ YAZICI

    PROF. DR. ALOK MISHRA

  2. Application of data mining techniques in software engineering

    Yazılım mühendisliğinde veri madenciliği tekniklerinin uygulanması

    ELİFE ÖZTÜRK KIYAK

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. DERYA BİRANT

  3. Vibration-based fault detection for ball bearings

    Bilyalı rulmanlarda titreşim verileri kullanılarak hasar tespiti

    REZA GOLAFSHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. KENAN YÜCE ŞANLITÜRK

  4. Yazılım kusur kestirimi eklentisinin esnek hesaplama yöntemleri ile tasarımı ve geliştirimi: kapsamlı metrik değerlendirilmesi

    Design and implementation of software fault prediction plugin by using soft computing methods: comprehensive metric assessment

    EZGİ ERTÜRK GÜLER

    Doktora

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EBRU SEZER