Novel software defect prediction method based on PCA and optimized LSTM
PCA ve optimize edilmiş LSTM'ye dayalı yeni yazılım kusur tahmin yöntemi
- Tez No: 704884
- Danışmanlar: PROF. DR. ALOK MISHRA, PROF. DR. ALİ YAZICI
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 71
Özet
Bu çalışmada, PCA tabanlı LSTM uygulayarak yazılım hatası tahmini için yeni bir yaklaşım sunulmuştur. Bu çalışma, PCA tarafından gerçekleştirilen özellik seçimi ve LSTM tarafından yürütülen sınıflandırma bölümünden oluşmaktadır. PCA'Nin öznitelik seçimi olarak uygulanmasının amacı, etkilenmeyen öznitelikleri kaldırarak hesaplama süresini azaltmak için girdi özniteliklerinin boyutunu küçültmektir. Ardından, PCA'Nin çıkışı, giriş yazılımı kusur özelliklerini iki sınıfa (kusurlu ve normal) sınıflandıran zaman serisi sınıflandırıcısı olan LSTM'ye bağlanır. En iyi doğruluğu elde etmek için LSTM'nin ağırlığını ve tabanını güncelleyerek LSTM'nin performansını optimize etmek için uygulanan PSO. Elde edilen sonuçlar bu alanda sunulan yaygın çalışmalarla karşılaştırılmıştır.
Özet (Çeviri)
In this thesis, new approach presented for software defect prediction applying PCA based LSTM. This study consists from two parts feature selection executed by PCA and classification part executed by LSTM. The aim applying PCA as feature selection is to reduce the size of input features to decrease the computation time by removing unaffected features. Then, the output of PCA wired to the LSTM that is time series classifier which classify the input software defect features to the two classes (defect and normal). The PSO applied to optimize the performance of the LSTM by updating the weight and basis of the LSTM to obtain best accuracy. The obtained results compared with common studies presented in this field.
Benzer Tezler
- A new method for software defect prediction based on optimized machine learning techniques
Optimize edilmiş makine öğrenim tekniklerine dayalı yazılım kusurlarını öngörmek için yeni bir yöntem
SHAHO ISMAEL HASSEN
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtılım ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ALİ YAZICI
PROF. DR. ALOK MISHRA
- Application of data mining techniques in software engineering
Yazılım mühendisliğinde veri madenciliği tekniklerinin uygulanması
ELİFE ÖZTÜRK KIYAK
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. DERYA BİRANT
- Vibration-based fault detection for ball bearings
Bilyalı rulmanlarda titreşim verileri kullanılarak hasar tespiti
REZA GOLAFSHAN
Yüksek Lisans
İngilizce
2015
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. KENAN YÜCE ŞANLITÜRK
- Image analysis for contrast enhanced ultrasound carotid plaque imaging
Başlık çevirisi yok
ZEYNETTİN AKKUŞ
- Yazılım kusur kestirimi eklentisinin esnek hesaplama yöntemleri ile tasarımı ve geliştirimi: kapsamlı metrik değerlendirilmesi
Design and implementation of software fault prediction plugin by using soft computing methods: comprehensive metric assessment
EZGİ ERTÜRK GÜLER
Doktora
Türkçe
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. EBRU SEZER