Geri Dön

An adaptive data filtering model for remaining useful life estimation

Kalan faydalı ömür tahmini için uyarlanabilir veri filtreleme modeli

  1. Tez No: 713513
  2. Yazar: OĞUZ BEKTAŞ
  3. Danışmanlar: PROF. DR. JEFF JONES
  4. Tez Türü: Doktora
  5. Konular: Havacılık ve Uzay Mühendisliği, Sivil Havacılık, Aeronautical Engineering, Civil Aviation
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: University of Warwick
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Havacılık ve Uzay Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 269

Özet

The field of Prognostics and Health Management is becoming ever more important in the modern maintenance era, with advanced techniques of automation and mechanisation becoming increasingly prevalent. Prognostic technology has promising abilities to forecast remaining useful life and likely future circumstances of complex systems. However, the evolution of data processing and its critical impact on remaining useful life predictions continually demand increasing development so as to meet higher performance levels. There is often a gap between the adequacy of prognostic pre-processing and the prediction methods. One way to reduce this gap would be to design an adaptive data processing method that can filter multidimensional condition monitoring data by incorporating useful information from multiple data sources. Due to the incomplete understanding on the multi-dimensional failure mechanisms and the collaboration between data sources, current prognostic methods lack the ability to deal effectively with complicated interdependency, multidimensional condition monitoring information and noisy data. Further conventional methods are unable to deal with these efficiently. The methodology proposed in this research handles these deficiencies by introducing a prognostic framework that allows the effective use of monitoring data from different resources to predict the lifetime of systems. The methodology presents a feed-forward neural network filtering approach for trajectory similarity-based remaining useful life predictions. The extraction of health indicators is applied as a type of dynamic filtering, in which the time series having full operational conditions are used to train a neural network mapping between raw training inputs and a health indicator output. This trained network function is evaluated by repeating condition monitoring information from multiple data subsets. After the network filtering, the training trajectories are used as baselines to predict the future behaviours of test trajectories. The similarity between these data subsets compares the relationship between the historical performance deterioration of a system's prior operating period with a similar system's degradation behaviour. The proposed prognostic technique, together with dynamic data filtering and remaining useful estimation, holds the promise of increased prediction performance levels. The presented methodology was tested using the PHM08 data challenge provided by the Prognostics Centre of Excellence at NASA Ames Research Centre, and it achieved the overall leading score in the published literature.

Özet (Çeviri)

The field of Prognostics and Health Management is becoming ever more important in the modern maintenance era, with advanced techniques of automation and mechanisation becoming increasingly prevalent. Prognostic technology has promising abilities to forecast remaining useful life and likely future circumstances of complex systems. However, the evolution of data processing and its critical impact on remaining useful life predictions continually demand increasing development so as to meet higher performance levels. There is often a gap between the adequacy of prognostic pre-processing and the prediction methods. One way to reduce this gap would be to design an adaptive data processing method that can filter multidimensional condition monitoring data by incorporating useful information from multiple data sources. Due to the incomplete understanding on the multi-dimensional failure mechanisms and the collaboration between data sources, current prognostic methods lack the ability to deal effectively with complicated interdependency, multidimensional condition monitoring information and noisy data. Further conventional methods are unable to deal with these efficiently. The methodology proposed in this research handles these deficiencies by introducing a prognostic framework that allows the effective use of monitoring data from different resources to predict the lifetime of systems. The methodology presents a feed-forward neural network filtering approach for trajectory similarity-based remaining useful life predictions. The extraction of health indicators is applied as a type of dynamic filtering, in which the time series having full operational conditions are used to train a neural network mapping between raw training inputs and a health indicator output. This trained network function is evaluated by repeating condition monitoring information from multiple data subsets. After the network filtering, the training trajectories are used as baselines to predict the future behaviours of test trajectories. The similarity between these data subsets compares the relationship between the historical performance deterioration of a system's prior operating period with a similar system's degradation behaviour. The proposed prognostic technique, together with dynamic data filtering and remaining useful estimation, holds the promise of increased prediction performance levels. The presented methodology was tested using the PHM08 data challenge provided by the Prognostics Centre of Excellence at NASA Ames Research Centre, and it achieved the overall leading score in the published literature.

Benzer Tezler

  1. Hava LiDAR nokta bulutundan köprülerin ve üst geçitlerin otomatik çıkarımı

    Automatic extraction of bridges and footbridges from airborne LiDAR point cloud

    MURAT ERSİN KORKMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Jeodezi ve FotogrametriKonya Teknik Üniversitesi

    Harita Mühendisliği Ana Bilim Dalı

    DOÇ. DR. CİHAN ALTUNTAŞ

  2. Sayısal işaret işlemci ile V32 modem

    V32 modem with digital signal processor

    ÖMER DOĞAN

    Yüksek Lisans

    Türkçe

    Türkçe

    1992

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    DOÇ. DR. MEHMET BÜLENT ÖRENCİK

  3. HDTV işaretlerinin uydu üzerinden iletiminde özel problemler

    Special problems in transmitting the HDTV signals by satellite

    RAMAZAN BAL

    Yüksek Lisans

    Türkçe

    Türkçe

    1991

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. BİNGÜL YAZGAN

  4. Uyarlamalı süzgeçler

    Adaptive filters

    RIDVAN AYSEL

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. AHMET H. KAYRAN

  5. An ambient semantic intelligence model for scientific research

    Bilimsel araştırma için çevreleyen anlamsal zeka modeli

    AHMET SUBAŞI

    Doktora

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilişsel Bilim Ana Bilim Dalı

    PROF. DR. HÜSEYİN CEM BOZŞAHİN

    PROF. DR. DENİZ ZEYREK BOZŞAHİN