Geri Dön

Improved classification of remote sensing imagery using image fusion techniques

Görüntü kaynaştırma yöntemleri kullanarak uzaktan algılanmış görüntülerin sınıflandırmalarının iyileştirilmesi

  1. Tez No: 715872
  2. Yazar: ESRA TUNÇ GÖRMÜŞ
  3. Danışmanlar: PROF. DR. ALIN ACHIM, PROF. DR. NISHAN CANAGARAJAH
  4. Tez Türü: Doktora
  5. Konular: Jeodezi ve Fotogrametri, Geodesy and Photogrammetry
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2013
  8. Dil: İngilizce
  9. Üniversite: University of Bristol
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 163

Özet

Özet yok.

Özet (Çeviri)

Remote sensing is a quick and inexpensive way of gathering information about Earth. It enables one to constantly get updated information from satellite images for real-time local and global mapping of environmental changes. Current classification methods used for extracting relevant knowledge from this huge information pool are not very efficient because of the limited training samples and high dimensionality of the images. Information fusion is often used in order to improve the classification accuracy prior or after performing classification. However, these techniques cannot always successfully overcome the aforementioned issues. Therefore, in this thesis, new methods are introduced in order to increase the classification accuracy of remotely sensed data by means of information fusion techniques. This thesis is structured in three parts. In the first part, a novel pixel based image fusion is introduced to fuse optical and SAR image data in order to increase classification accuracy. Fused images obtained via conventional fusion methods may not contain enough information for subsequent processing such as classification or feature extraction. The proposed method aims to keep the maximum contextual and spatial information from the source data by exploiting the relationship between spatial domain cumulants and wavelet domain cumulants. The novelty of the method consists in integrating the relationship between spatial and wavelet domain cumulants of the source images into an image fusion process as well as in employing these wavelet cumulants for optimisation of weights in a Cauchy convolution based image fusion scheme. In the second part, a novel feature based image fusion method is proposed in order to increase the classification accuracy of hyperspectral images. An application of Empirical Mode Decomposition (EMD) to wavelet based dimensionality reduction is presented with an aim to generate the smallest set of features that leads to better classification accuracy compared to single techniques. Useful spectral information for hyperspectral image classification can be obtained by applying the Wavelet Transform (WT) to each hyperspectral signature. As EMD has the ability to describe short term spatial changes in frequencies, it helps to get a better understanding of the spatial information of the signal. In order to take advantage of both spectral and spatial information, a novel dimensionality reduction method is introduced, which relies on using the wavelet transform of EMD features. This leads to better class separability and hence to better classification. Finally, in the last part of the thesis, a novel decision based fusion is performed in order to increase the classification accuracy of previously introduced feature based image fusion method for hyperspectral image data sets. Each feature is independently classified by Support Vector Machines, creating a multiclassifier system. Then, classification results are fused using a decision fusion criterion to produce one final classification. The proposed method further increases the overall classification accuracy by independent classifiers when reduced number of features are employed compared to single stage classification.

Benzer Tezler

  1. Satellite images super resolution using generative adversarial networks

    Uydu görüntülerinde çekişmeli üretici ağ kullanarak süper çözünürlük

    MARYAM SERDAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. AHMET HAMDİ KAYRAN

  2. Yüksek çözünürlüklü uydu görüntüleri kullanarak benzer spektral özelliklere sahip doğal nesnelerin ayırt edilmesine yönelik bir metodoloji geliştirme

    Developing a methodology for discriminating natural objects having spectrally similar features using very high resolution satellite imagery

    İSMAİL ÇÖLKESEN

    Doktora

    Türkçe

    Türkçe

    2015

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. TAHSİN YOMRALIOĞLU

  3. Soil classification with spaceborne multi-temporal hyperspectral imagery using spectral unmixing and image fusion

    Spektral ayrıştırma ve görüntü kaynaştırma kullanarak uydu-tabanlı çok-zamanlı hiperspektral uzaktan algılama ile toprak sınıflandırması

    EYLEM KABA

    Doktora

    İngilizce

    İngilizce

    2023

    Jeodezi ve FotogrametriOrta Doğu Teknik Üniversitesi

    Jeodezi ve Coğrafi Bilgi Teknolojileri Ana Bilim Dalı

    PROF. DR. SEVDA ZUHAL AKYÜREK

    PROF. DR. UĞUR MURAT LELOĞLU

  4. Single-frame and multi-frame super-resolution on remote sensing images via deep learning approaches

    Derin öğrenme yaklaşımlarıyla uzaktan algılama görüntülerinde tek çerçeve ve çok çerçeve süper çözünürlük

    PEIJUAN WANG

    Doktora

    İngilizce

    İngilizce

    2022

    İletişim Bilimleriİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. ELİF SERTEL

  5. Görüntü sınıflandırması için yapay sinir ağlarının analiz ve optimizasyonu

    Analysis and optimization of artificial neural networks for image classification

    OZAN ARSLAN

    Doktora

    Türkçe

    Türkçe

    2001

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    PROF. DR. OĞUZ MÜFTÜOĞLU

    PROF. DR. CANKUT ÖRMECİ