Geri Dön

Hidden probabilistic one-counter automata

Başlık çevirisi mevcut değil.

  1. Tez No: 717927
  2. Yazar: MEHMET KURUCAN
  3. Danışmanlar: DR. DOMİNİK WOJTCZAK
  4. Tez Türü: Doktora
  5. Konular: İstatistik, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: University of Liverpool
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 194

Özet

Özet yok.

Özet (Çeviri)

This thesis furthers the ongoing study of devising faster algorithms for the learning problem of infinite-state systems. We examine the Hidden Probabilistic One-Counter Machine (HP1CA) model, a natural extension of both Probabilistic One-Counter Automata (P1CA) and Hidden Markov Model (HMM) in this thesis. HP1CAs allow for the quadratic time complexity of learning the parameters of the model based on observational data. This gives them a big advantage over other infinite-state systems, e.g., probabilistic pushdown automata for which the same task requires cubic time. An HP1CA is a P1CA where both the control states and the counter values are hidden, but the output sequence is not (note that there is no input sequence). Such a model has a non-negative counter whose value can change by at most one during a transition. The probability of a transition depends only on the current control state and whether the counter value is zero or not. The probability of a given output symbol depends on the current control state, but not on the value of the counter. A sequence of transitions is valid only if it starts and ends in a special initial control state and final control state, respectively, with the counter value equal zero. After introducing the model, we adapt Baum-Welch algorithm, which is a special case of Expectation-Maximization algorithm used in unsupervised learning in HMM, to update the parameters of an HP1CA. Furthermore, we also adopted two dynamic programming algorithms which are called Forward algorithm and Backward algorithm, respectively to our new model. Our adapted algorithms have worst-case quadratic time complexity as compared to linear time for HMM. At the same time, its complexity is linear if the maximum value of the counter is assumed to be bounded by a constant (as it is commonly in practice). After that, we look at other possible HP1CA models that differ depending on the semantic of what a valid transition sequence is. This can depend on the the initial and final terminal state condition as follows. First, an HP1CA can either start in (1) a fixed control state with counter zero or (2) have multiple initial control states, and some fixed probability distribution specifies the likelihood of starting in a given control state (with a counter value zero). Second, an HP1CA may be required to end with with (A) a unique i Mehmet Kurucan Hidden Probabilistic One-Counter Automata final control state with counter value zero, (B) a unique final control state with arbitrary counter value, (C) multiple final control states with zero counter value. This gives rise to six possible semantics, and only (1-A) semantic studied by us earlier. We adapt the learning and dynamic programming algorithms to the remaining five models. In the end, we demonstrate that our HP1CA model lead to better accuracy and lower fit error of observation sequences of as compared to HMMs through an implementation.

Benzer Tezler

  1. Hybridization of probabilistic graphical models and metaheuristics for handling dynamism and uncertainty

    Değişimin ve belirsizliğin ele alınması için olasılıksal çizgesel biçelerin ve sezgi-üstlerinin melezleştirilmesi

    GÖNÜL ULUDAĞ

    Doktora

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞE ŞİMA UYAR

  2. Probabilistic graphical models for brain computer interfaces

    Probabilistic graphical models for brain computer interfaces

    JAİME FERNANDO DELGADO SAA

    Doktora

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik MühendisliğiSabancı Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MÜJDAT ÇETİN

  3. An application on combining of cryptography and steganography for improving security

    An application on combining of cryptography and steganography for ımproving security

    SARHAD BAEZ HASAN HASAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Mühendislik BilimleriFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. MUHARREM TUNCAY GENÇOĞLU

  4. Bist 30 hisse senedi endeksinin kısa dönem öngörüsü: Saklı Markov Modeli uygulaması

    Short-term forecast of bist30 stock index: Application of Hidden Markov Model

    ALİ SİNANOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    EkonometriAtatürk Üniversitesi

    Ekonometri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HAYRİ ABAR

  5. Privacy preserving data publishing with multiple sensitive attributes

    Privacy preserving data publishing with multiple sensitive attributes

    AHMED ABDALAL

    Doktora

    İngilizce

    İngilizce

    2012

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YÜCEL SAYGIN

    YRD. DOÇ. DR. MEHMET ERCAN NERGİZ