Geri Dön

Uplink throughput prediction and device geolocation in cellularcommunication system using machine learning methodology

Başlık çevirisi mevcut değil.

  1. Tez No: 719201
  2. Yazar: ENGİN EYCEYURT
  3. Danışmanlar: DR. JOSKO ZEC
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Florida Institute of Technology
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 124

Özet

Özet yok.

Özet (Çeviri)

Uplink Throughput Prediction and Device Geolocation in Cellular Communication System Using Machine Learning Methodology Author: Engin Eyceyurt Research Director: Josko Zec, Ph.D. Continuously increasing the number of interconnecting devices, cloud services, and social media usage require enormous amounts of mobile data. Due to the rapid increase in cellular data demand, accurate cellular data prediction has become more critical. The increase in the number of mobile subscribers raised the issue of whether users' location can be determined. The most important uses of geolocation technology are emergencies and security purposes. In addition to emergency and security affairs, geolocation technology can decrease cellular network maintenance costs. Mobile network systems have become highly complex with a large number of parameter and feature add-ons. Along with the increased complexity, old fashion methods become insufficient for network management, and an advanced optimization approach is necessary, which is machine learning. Increased sensitivity of received radio parameters enabled many applications to get dependable results. This thesis proposes a reliable solution for uplink data rate prediction and device geolocation using LTE radio parameters in machine learning algorithms. We first performed an extensive LTE data collection in three distinct locations and determined the LTE lower layer parameters correlated with uplink (UL) throughput. iv Selected LTE parameters with a high correlation with UL throughput (RSRP, RSRQ, and SNR) are trained in five different learning algorithms for estimating UL data rates. Our evaluations show that Decision Tree and K-nearest Neighbor algorithms are outperforming the other algorithms at throughput estimation. The prediction accuracy with the R2 determination coefficient of 92%, 85%, and 69% is obtained from Melbourne-FL, Batman-Turkey, and Houston-TX, respectively. Two intense LTE measurement data taken from one of the major US cellular carriers is used for device geolocation. After feature extraction and data analysis, received signal strengths of one serving and up to eight neighbor base stations are trained in machine learning algorithms. When %90 of data used as training set and %10 of data is used as testing set in K-nearest Neighbor algorithm, mean distance error of 34.9 meters with the standard deviation of 147.5 meters has achieved in the data measured in San Francisco, Ca.

Benzer Tezler

  1. Machine learning based multi-scale joint forecasting-scheduling for the internet of things

    Nesnelerin interneti için makine öğrenmesi tabanlı çok ölçekli bütünleşik tahminleme-çizelgeleme

    MERT NAKIP

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Elektrik ve Elektronik MühendisliğiYaşar Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. VOLKAN RODOPLU

    PROF. DR. CÜNEYT GÜZELİŞ

  2. Artificial neural network based dynamic forecaster selection in joint forecasting-scheduling for the internet of things

    Nesnelerin interneti için bütünleşik tahmin çizelgelemede yapay sinir ağı tabanlı dinamik tahminleyici seçimi

    ERDEM ÇAKAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik MühendisliğiYaşar Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. VOLKAN RODOPLU

    PROF. DR. CÜNEYT GÜZELİŞ

  3. LTE fiziksel katman ölçümleri kullanılarak konum bazlı LTE indirme ve yükleme hızının öngörülmesi

    Location-based LTE data downlink and uplink throughput prediction using LTE physical layer measurements

    TURGAY KIRCALI

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    İşletmeMarmara Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. ÖZGÜR ÇAKIR

  4. Tek taşıyıcılı frekans bölmeli çoklu erişim (SC-FDMA) sistemlerinde taşıyıcı frekans kaymasının kestirimi

    Estimation of carrier frequency offset in single carrier frequency division multiple access (SC-FDMA) systems

    MERVE BALKİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Elektrik ve Elektronik MühendisliğiErciyes Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. NECMİ TAŞPINAR

  5. Performance analysis of uplink throughput with changing active set size in cellular radio systems

    Hücresel radyo sistemlerinde aktiv set sayısı değişimine bağlı yukarı yönlü data hızı performans analizi

    İSMET ÇAĞDAŞ SOY

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Elektrik ve Elektronik MühendisliğiBaşkent Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ALPARSLAN ÇAĞRI YAPICI