Derin öğrenme temelli iç mekan yönlendirme uygulaması
Deep learning based indoor routing application
- Tez No: 719303
- Danışmanlar: DR. ÖĞR. ÜYESİ NESRİN AYDIN ATASOY
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Karabük Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 60
Özet
Son yıllarda artan nüfus ile birlikte insanların hastane, alışveriş merkezi gibi yaşam alanlarında harcadıkları zaman da artmaktadır. Açık alanlarda yaşanılan sıkıntılara ek olarak kapalı alanlarda da ulaşım konusunda insanların istedikleri yerlere ulaşmak için harcadıkları zaman binaların karmaşıklığına bağlı olarak değişmektedir. Bu noktada iç mekanlarda insanların yönlendirilmesi için farklı yaklaşımlar araştırma konusu olmuştur. Derin öğrenme temelli yönlendirme çalışmalarına katkı olarak bu tez çalışmasında yönlendirme işlemleri iki adımda ele alınmaktadır. İlk olarak mağaza konum bilgisinin alınması için Transfer öğrenmeye dayalı Evrişimsel Sinir Ağları (CNN) mimarisi kullanılmıştır. Oluşturulan model mimarisi mağaza görüntülerinden yönlendirme için başlangıç bilgisini vermektedir. Bir sonraki adımda yönlendirme adımları Android mobil uygulama aracılığıyla kullanıcıya sunulmaktadır. Uygulama ile kullanıcıların internet bağlantısı olmadan aynı ve farklı katlar arasında yönlendirme işlemi gerçekleştirilmektedir.
Özet (Çeviri)
With the increasing population in recent years, the time people spend in living spaces such as hospitals and shopping centers is also increasing. In addition to the difficulties experienced in open areas, the time people spend in transportation in indoor areas to reach the places they want varies depending on the complexity of the buildings. At this point, different approaches to directing people indoors have been the subject of research. In this thesis, as a contribution to deep learning-based routing studies, routing processes are discussed in two steps. Firstly, Convolutional Neural Networks (CNN) architecture based on Transfer learning was used to retrieve store location information. The model architecture created gives the initial information for routing from the store images. In the next step, the routing steps are presented to the user via the Android mobile application. With the application, users can be routed between the same and different lines without an internet connection.
Benzer Tezler
- A 3D video quality evaluation model that provides high depth perception satisfaction and efficient transmission channel use based on depth cues
Derinlik ipuçlarına dayanarak yüksek derinlik algısı memnuniyeti ve verimli iletim kanalı kullanımı sağlayan bir 3 boyutlu video kalite değerlendirme modeli
YAMAÇ TAN
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTED ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. GÖKÇE NUR YILMAZ
- Derin öğrenme temelli havadan havaya insansız hava aracı tespiti
Deep learning based air to air unmanned aircraft detection
VEYSEL KARANİ ÇETİNKAYA
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiSakarya Uygulamalı Bilimler ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. SÜLEYMAN UZUN
- Autolanding control system design with deep learning based fault estimation
Derin öğrenme tabanlı hasar tespitli gürbüz otomatik iniş kontrol sistemi
BATUHAN EROĞLU
Yüksek Lisans
İngilizce
2019
Uçak Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NAZIM KEMAL ÜRE
- Directional regularization based variational models for image recovery
Görüntü onarımı için yön güdümlü düzenlemeye dayalı varyasyonel modeller
EZGİ DEMİRCAN TÜREYEN
Doktora
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA ERSEL KAMAŞAK
- Navigation based on inertial sensor data using deep learning techniques
Ataletsel sensör verileriyle derin öğrenme teknikleri kullanılarak navigasyon
MUHAMMET SERHAT SOYER
Yüksek Lisans
İngilizce
2021
Elektrik ve Elektronik MühendisliğiKoç ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET CENGİZ ONBAŞLI