A novel consistency metric for web application performanceanalysis using geographically-distributed traffic data
Başlık çevirisi mevcut değil.
- Tez No: 720403
- Danışmanlar: DR. DENİZ GURKAN
- Tez Türü: Doktora
- Konular: Coğrafya, Trafik, Geography, Traffic
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: University of Houston
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 166
Özet
Özet yok.
Özet (Çeviri)
Web applications constitute the majority of internet traffic today. These applications have been optimized for a desired level of user experience. Optimization of web application performance requires extensive testing. A reliability guarantee and associated optimization measures pose a considerable challenge in such testing approaches, especially when worldwide access is becoming a norm. Measurement of web application performance is typically conducted through models that approximate the expected user experiences, the available service architectures, and the network-related impairments. In addition, the components of such a test, namely, client and server sides with the network state in the middle, each have immense amounts of configuration variations and associated requirements for performance guarantees. In this dissertation, we tackled the analysis of web application performance through a novel measure that provides a consistency indicator. We first defined measurement and metric development methodology. We conducted our research to demonstrate what constitutes consistent performance on parameters of content length and loading time, along with other parameters specific to the application. We then applied an empirical methodology to measure the consistency of web application performance through an extensive data collection tool, NetForager. We developed this tool to collect repeatable web application performance data in the form of traffic packet captures at geographically-distributed locations around the nation. The tool uses a framework with container technologies to orchestrate isolated web application data collection. The consistency metric for a representative set of web applications has been calculated along with an error margin. The content length and delay during the retrieval of the application data have been utilized for the calculations in order to achieve a holistic performance iii perspective. We present a consistency metric analysis for 15 web applications to reason about how optimizations and acceleration methods may provide superior application performance consistency. More importantly, our metric lays a foundation for holistic external testing of application performance that can be agnostic to variations in end-user clients, application service architecture and associated servers, and the network state. Furthermore, a geographically-distributed measurement of the consistency metric provided insights into how individual session count and other application characteristics can be monitored
Benzer Tezler
- Fractional-order derivative based adaptive methods for control and optimization
Kontrol ve optimizasyon için kesir mertebeli türev tabanlı adaptif yöntemler
MERT CAN KURUCU
Doktora
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
PROF. DR. MÜJDE GÜZELKAYA
PROF. DR. İBRAHİM EKSİN
- Üniversitelerin idari süreçlerini iyileştirmek için akıllı konuşma aracı geliştirme: Sakarya Üniversitesi vaka çalışması
Developing an intelligent conversational agent to improve administrative processes at universities: A case study of Sakarya University
KANAAN AL JAF
Doktora
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. CEMİL ÖZ
- Makine öğrenmesi kullanarak Türkiye'de elektrikli araç şarj istasyonlarının potansiyel kullanım performansının mekânsal tahmini
Spatial estimation of potential utilization performance of electric vehicle charging stations in Türkiye using machine learning methods
SERKAN TANRIVERDİ
Yüksek Lisans
Türkçe
2025
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
DOÇ. DR. ADALET DERVİŞOĞLU
- Schwarzian türevlerine dayalı yeni kenar algılama yöntemleri ve MBB kenar süzgecinin geliştirilmesi
Novel edge detection methods based on Schwarzian derivatives and the development of the MBB edge filter
BÜŞRA KÖKSAL
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiMatematik Mühendisliği Ana Bilim Dalı
DOÇ. DR. BURCU TUNGA
DR. ÖĞR. ÜYESİ RÜŞTÜ MURAT DEMİRER
- Advancing ROC curve modeling with information complexity for evaluating the performance of machine learning algorithms
Makine öğrenimi algoritmalarının performansını değerlendirmek için bilgi karmaşıklığıyla ROC eğrisi modelinin geliştirilmesi
AYLİN GÖÇOĞLU
Doktora
İngilizce
2025
İstatistikDokuz Eylül Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. NESLİHAN DEMİREL
PROF. DR. HAMPARSUM BOZDOGAN