Geri Dön

Hierarchical image classification with self-supervised vision transformer features

Özdenetimli görü dönüştürücü öznitelikleri ile hiyerarşik imge sınıflandırması

  1. Tez No: 726888
  2. Yazar: CANER KARAGÜLER
  3. Danışmanlar: DR. ÖĞR. ÜYESİ MUSTAFA ÖZUYSAL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 63

Özet

Görüntü sınıflandırma ile ilgili pek çok çalışma bulunuyor ve bunların çoğu evrişimli sinir ağları (CNN) temel alınarak gerçekleştirilmiştir. Görüntü sınıflandırmada, eşit olmayan görsel ayrılabilirlik nedeniyle bazı sınıfları diğerlerinden ayırt etmek daha zordur. Bu zor sınıfların ayrılabilmesi için, ilgili alana özgü sınıflandırıcılar gerekmektedir, ancak geleneksel evrişimli sinir ağları, düz N-yollu sınıflandırıcıları olarak eğitildiği için sınıflar arasındaki hiyerarşik bilgiden yeteri kadar yararlanamazlar. Bu sorunu çözmek için araştırmacılar, sınıf hiyerarşisini evrişimli sinir ağlarına dahil eden yeni teknikler keşfettiler ve bu tekniklerin çoğu, ImageNet gibi büyük ölçekli veri kümelerinde mevcut evrişimli sinir ağlarının başarı oranlarını geçmektedir. Bu çalışmada, özdenetimli görü dönüştürücü özniteliklerini kullanan bir hiyerarşik imge sınıflandırıcının hiyerarşik evrişimli sinir ağlarını geçip geçemeyeceğini sorguladık. Bu çalışma sırasında hiyerarşik bir ETHEC veri seti kullandık ve görüntü transformatörleri yardımıyla dikkat öznitelikleri çıkardık. Bu dikkat özelliklerini kullanarak 3 farklı hiyerarşik sınıflandırma yaklaşımı uyguladık ve sonuçları yaklaşımlarımızın CNN alternatifi ile karşılaştırdık.

Özet (Çeviri)

There are lots of works about image classification and most of them are based on convolutional neural networks (CNN). In image classification, some classes are more difficult to distinguish than others because of non-even visual separability. These difficult classes require domain-specific classifiers but traditional convolutional neural networks are trained as flat N-way classifiers. These flat classifiers can not leverage the hierarchical information of the classes well. To solve this issue, researchers proposed new techniques that embeds class-hierarchy into the convolutional neural networks and most of these techniques exceed existing convolutional neural networks' success rates on large-scale datasets like ImageNet. In this work, we questioned if a hierarchical image classification with self- supervised vision transformer features can exceed hierarchical convolutional neural networks. During this work, we used a hierarchical ETHEC dataset and extract attention features with the help of vision transformers. Using these attention features, we implemented 3 different hierarchical classification approaches and compared the results with CNN alternative of our approaches.

Benzer Tezler

  1. Effect of semi-supervised self-data annotation on video object detection performance

    Yarı denetimli veri etiketleme işleminin video nesne tespiti üzerine etkisi

    VEFAK MURAT AKMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    PROF. DR. BEHÇET UĞUR TÖREYİN

  2. Sosyal medyada statü kaygısı ve kimliğin sunumu instagram ve swarm örneği

    Status anxiety in social media and presentation of identity instagram and swarm case

    KAAN MERT ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    İletişim BilimleriAtatürk Üniversitesi

    Radyo Televizyon ve Sinema Ana Bilim Dalı

    PROF. DR. ADEM YILMAZ

  3. A deep learning based framework for identification of ship types using optical satellite images

    Optik uydu görüntüleri kullanarak gemi tiplerinin imliklendirilmesi için derin öğrenme tabanlı yöntem

    SERDAR KIZILKAYA

    Doktora

    İngilizce

    İngilizce

    2023

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. ELİF SERTEL

  4. Kültür ve mekan etkileşimi kapsamında konut ve yakın çevresi ilişkilerine diyalektik bir yaklaşım

    A dialectic approach to relations of home and its near environment in the context of culture and space interaction case study: Bursa, Kale Sokak

    ARZU ISPALAR ÇAHANTİMUR

    Yüksek Lisans

    Türkçe

    Türkçe

    1997

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. HÜLYA TURGUT