Nowcasting Turkey's tourist arrivals and tourism income
Türkiye'ye gelen turist sayısının ve turizm gelirlerinin şimdiki zaman tahmini
- Tez No: 735467
- Danışmanlar: DOÇ. DR. YASEMİN ÖZERKEK
- Tez Türü: Yüksek Lisans
- Konular: Ekonomi, Turizm, İşletme, Economics, Tourism, Business Administration
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: Marmara Üniversitesi
- Enstitü: Sosyal Bilimler Enstitüsü
- Ana Bilim Dalı: İktisat Ana Bilim Dalı
- Bilim Dalı: İktisat (İngilizce) Bilim Dalı
- Sayfa Sayısı: 66
Özet
Bu tez, Türkiye'ye gelen turist sayılarını ve Türkiye'nin turizm gelirini tahmin etmek için şimdiki zaman tahmini yapmaktadır. Henüz resmi veriler yayınlanmadan önce yüksek frekanslı Google Trendler arama verilerine ulaşılabilindiğinden, şimdiki zaman tahmininde bu veriler kullanılmaktadır. Haftalık Google Trendler arama verilerinin uygunluğu turizm verilerinin şimdiki zaman tahmini için test edilmektedir. Bu analiz için Eylül 2011 ile Eylül 2021 arasındaki arama verileri kullanılmaktadır. Aylık yayınlanan turist varış verilerini haftalık Google Trendler arama verileriyle tahmin etmek için Mixed-data sampling (MIDAS) modeli kullanılmaktadır. Bu çalışmadan elde edilen bulgular, Google Trendler verilerinin, Türkiye'ye gelen turist sayısını tahmin etme kabiliyetini önemli ölçüde arttırdığını göstermektedir. Birçok MIDAS regresyonlarından en iyi tahmin performansını sergileyen seçilmiş ve Türkiye'ye gelen turist sayıları tahmin edilmiştir. MIDAS modeli kullanılarak kişi başına ortalama turizm harcaması verileri ve tahmini turist sayıları ile turizm geliri tahmin edilmiştir.
Özet (Çeviri)
This thesis is nowcasting to estimate Turkey's tourist arrivals and tourism income. Because the high-frequency Google Trends search data is available before the official data is published, this data is used in the nowcasting. Eligibility of weekly Google Trends search data is tested for nowcasting of tourism data. For this analysis, search data between September 2011 and September 2021 are used. To nowcast monthly published tourist arrivals data with weekly Google Trends search data, the Mixed-data sampling (MIDAS) model is utilized. Findings from this study suggest that Google Trends data significantly improve accuracy for nowcasting tourist arrivals for Turkey. Out of multiple MIDAS regressions, the most accurate ones are chosen and tourist arrivals for Turkey are estimated. With the average tourism expenditure per capita data and estimated tourist arrivals with the MIDAS model, tourism income is estimated.
Benzer Tezler
- Türkiye'nin makroiktisadi göstergelerinin şimdi tahmini
Nowcasting Turkey's macroeconomic indicators
HAKAN KARA
- Tornadoes, severe hail, and their environments in Turkey
Türkiye'de hortumlar, şiddetli dolu hadiseleri, ve oluştukları çevre koşulları
ABDULLAH KAHRAMAN
Doktora
İngilizce
2016
Meteorolojiİstanbul Teknik ÜniversitesiMeteoroloji Mühendisliği Ana Bilim Dalı
PROF. DR. MİKDAT KADIOĞLU
- Karma frekanslı veri örnekleme (MIDAS) yöntemi: Teori ve uygulama
Mixed data sampling (MIDAS) method: Theory and application
SERKAN SAMUT
Doktora
Türkçe
2020
EkonometriKaradeniz Teknik ÜniversitesiEkonometri Ana Bilim Dalı
PROF. DR. RAHMİ YAMAK
- Essays on nowcasting and forecasting business cycles and real economy
Konjonktür hareketleri ve reel ekonomi anlık tahmini ve öngörüsü üzerine makaleler
HAMZA DEMİRCAN
- Context-aware remote sensing data processing for improvement of agricultural predictions
Bağlam farkındalıklı uzaktan algılama veri entegrasyonu ile tarımsal tahminlerin iyileştirilmesi
AYDA FITRIYE AKTAŞ
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. BURAK BERK ÜSTÜNDAĞ