Geri Dön

Anahtarlamalı güç kaynağı transformatörü tasarımı ve magnetik malzeme seçimi

Başlık çevirisi mevcut değil.

  1. Tez No: 75211
  2. Yazar: AHMET GÜRBÜZ
  3. Danışmanlar: PROF. DR. EMİN TACER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1998
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 119

Özet

ÖZET Bu tezde, güç elektroniği devrelerinde kullanılan magnetik komponentlerin toplam ağırlığını, boyutlarını ve hacmini dolayısıyla devre sisteminin verimini doğrudan etkileyen, magnetik malzemeler, bir anahtarlamalı güç kaynağı transformatörü tasarımı yapılarak incelenmiştir. Tasarımda amorf metal, ferrit ve %80 nikel-demir alaşımları kullanılarak malzemeler arasında çeşitli açılardan kıyaslamalar yapılmıştır. Anahtarlamalı güç kaynaklan devreleri genel olarak anlatılmış ve anahtarlamalı güç kaynaklarında kullanılan malzemeler tanıtılarak birbirleriyle karşılaştırmıştır. Mıknatıslanma teorisi anlatılarak magnetik komponentlerde kullanılan malzemelerin önemli temel büyükleri tanıtılmıştır. Magnetik malzeme seçiminde etkin olacak kriterler incelenerek çeşitli malzemelerin B-H eğrileri, çekirdeklerin kesimli ve kesimsiz olduğu durumlarda anlatılmıştır. Anahtarlamalı güç kaynağı transformatörü tasarımında kullanılacak olan büyüklükler gösterilerek adım adım tasarım gerçekleştirilmiştir. Bir bilgisayar programı hazırlanarak transformatörüm giriş gerilimi, giriş akımı, devrenin anahtarlama frekansı, malzeme türü gibi büyüklükler girilerek optimum tasarım sağlanmıştır. Program üç tip malzeme kullanılarak farklı incelemeler için koşturulmuştur. İlk tasarımda simetrik kare dalga ile beslenen anahtarlamalı güç kaynağı transformatörü belirli giriş ve çıkış büyüklükleri için amorf metal, ferrit ve nikel-demir alaşımı kullanılarak transformatörün demir kayıpları, ağırlıkları, bakır kayıpları ve ağırlıkları, birim nüve kesidine düşen toplam kayıplar incelenmiştir. Sonra aynı inceleme sinüs dalga ile besleme durumu için yapılmıştır. Daha sonra program değişen akı yoğunluklarına göre her üç malzeme için demir kayıpları, ağırlıkları ve birim keşide düşen toplam kayıplar yönünden incelenmiş ve grafikleri çizilmiştir. Kesintili iletim durumunda iletim oranı ile transformatörde kullanılan malzeme çeşidine göre yüksek frekanslı transformatörünün demir kaybı, demir ağırlığı, birim kesidine düşen toplam kayıp grafikleri çizilmiştir. Amorf metal, ferrit ve nikel-demir alaşımı çıkan grafiklere göre birbirleriyle çeşitli kriterler açısından kıyaslanarak uygulamaya göre hangi malzemenin seçilmesi gerektiği araştırılmıştır. xı

Özet (Çeviri)

SUMMARY THE DESIGN OF THE SWITCHED MODE POWER SUPPLY TRANSFORMER AND MAGNETIC MATERIAL SELECTION In this master thesis, the magnetic core materials that effects the overall size, weight,volume and the efficiency of the electronic equipments are examined by using these materials in a high frequency power transformer design. The design consist of three kinds of materials, amorphous metals (metallic glasses), ferrit, and nickel-iron alloys. The comparison of the materials are made in different sights. The switching power supplies are described and the magnetic core materials that is used in output transformers of these supplies are compared. The theory of magnetism is explained in order to define the important electrical features of the magnetic materials. The selection of the proper magnetic material is expressed using B-H curves in cut and uncut cores. The design of the high frequency power transformer is explained step by step. The conversion process in power electronics reqiires the use of transformers, components which frequently the heaviest and the bulkiest item in the conversion circuit. The have also a significant effect on the overall performance and efficiency of the system. Accordingly, the design of such transformers has an important in system weight, power conversion efficiency, and cost. Because of the interdependence and interaction of parameters, many tradeoffs are necessary to achieve design optimization. Manufacturers have for years assigned numeric codes to their cores to indicate their power handling ability. This method assigns to each core a number called the Ap that is the product of the window area Wa and the cross-section area Ac These numbers are used by core suppliers to summarize dimensional and electrical properties in their catalogs. The product of the window area Wa and the core area gives the area product Ap a dimension to the fourth power. Relationships between the Ap numbers xnand current density J has been developed. The area product Ap is a dimension to the fourth power l4, whereas the volume is dimension to the third power P, the surface area At is a dimension to the second power l2. The straight-line have been developed for Ap and volume, Ap and surface area At, and Ap and weight. These relationships can be used as new tools to simplfy and standardize the process of power transformer design. They make it possible to design transformers of lighter weight and smaller volume or to optimize efficiency without going through a cut and try design procedure. The designer is faced with a set of constraints which must be observed in design of any transformer. One of these is the output power, Po, which the secondary winding must be capable of delivering to the load within specified regulation limits. Another relates to minimum efficiency of operation which is depending upon the maximum power loss which can be allowed in the transformer. Still another defines the maximum permisseble temperature rise for the transformer when used in specified temperature environment. One of the basic step in transformer design is the selection of the proper material. The aid in the selection of the cores, a comparision of three core materials, amorphous metal, ferrit and nickel-iron alloy is presented which illustrates their influence on overall transformer efficiency and weight. The designer should also be aware of the cost difference core materials of the nickel steel family and the silicon steel family. Depending upon the application certain of these constraints will dominate. Parameters affecting others may then be traded off necessary to achieve the most desirable design. It is not possible to optimize all parameters in a single design because of their interaction and interdependence. If volume and weight are of great significance, reductions in both can often be affected operating the the transformer at a higher frequency but at a penalty in efficiency. When the frequency can not be increased, reduction in weight and volume may still be possible by selecting a more efficient material, buta penalty of increased cost. Many tradeoffs thus must be effected to achieve design goals. xiuFerrite materisls have found widespread use throughout the power supply industry, many tried and true methods have been developed for core geometry and material selection. However, as the industry matured, so have the design methods and tools. Among these renovated design techniques are computer simulations and modelling of core and material attributes. Material characteristics such as watt loss, frequency response, and permeability changes versus temperature are of design interest to design engineers and core specifiers. Many such features are included in the curves and equations following along with a few suggestions for their use. The correct choice of the core material will optimize power supply performance. In metal ferromagnetic materials, eddy current losses increase rapidly with frequency and are controlled by using thin laminations, thin-gauge strips of material, or by powdering and insulating metallic particles used to produce the core. Practical and theoretical factors limit the effectiveness of this approach. Ferrite materials have one paramount advantage-very high electrical resistivity, which means that eddy current losses are much lower than metals. As operating frequencies increase, ferrites become a practical and useful magnetic material since ferromagnetic types can not be made progressively thinner or smaller to reduce eddy current losses to acceptable levels. While ferrites do provide low core losses at higher frequencies, they have, as previously mentioned, relatively low saturation levels; therefore, for a given flux density, a larger cross-section is needed. The added core area increases copper losses (AC and DC); however, at 20 kHz and higher, the reduction in core loss obtained when using a ferrite is greater that the subsequent increase in copper losses. Additionally, fewer turns are needed at higher frequencies to support a given voltage; hence, the copper losses are kept down. For the lower range of power and switching frequencies, nickel-alloy ferromagnetic cores have relatively high electrical resistivitiy; laminated, or strip wound cores fabricated from thin strip, can be effective up to the 20 kHz range ( or higher if designed and operated at low flux density levels). Soft magnetic ferrit cores have traditionally been used in switched mode power supply ( SMPS) transformers because of their low hysteresis loses compared with silicon-steel laminations. xivHowever, due to process difficulties associated with manufacturing large ferrit cores, there is a practical limit beyond which ferrit cores must be stacked in order to increase power handling ability. The main disadvantages associated with this method are ? Large ferrits ( >1 kg / set) are very expensive. ? Higher manufacturing costs as a result of stacking cores. Despite these disadvantages, ferrite cores still represent a superior solution compared silicm-steel laminations as frequency and power levels are increased. Amorphous metal C cores represent a cost effective alternative : they overcome the two main disadvantages associated with ferrite cores for high power high frequency transformer design applications, while maintaining comparable frequency dependent hysteresis core losses. For example, core losses per kilogram for high frequency ferrite and C cores are : High frequency, ferrite : 52. 1 W / kg 25°C / 25 kHz / 0.2 T Amorphous C core : 51.0 W /kg 25°C/ 25 kHz/ 0.2 T To the SMPS designer, the choice of amorf metal C core provides a superior solution to core loss when compared to ferrites and Si-Fe steel cores. In addition, amorphous C cores offer dramatic reduction in weight and volume (of up to 50 %) and a substantially wider operating temperature range than ferrites. Amorphous metals have unique combination of loss and high saturation flux density take advanced power conditioning applications to higher performance levels than previously possible with conventional ferromagnetic materials. For a wide range of high frequencies and hot-spot temperature ( up to Class F) C cores are used in a growing list of advanced power conditioning applications including : ? UPS and SMPS power factor correction chokes ? UPS harmonic filter inductors ? High power outdoor industrial ballasts ? Welding power supplies ? High speed rail power systems xvManufactured in a variety of ultra-efficient core configurations, amorphous metal C cores provide significant cost, design and performance benefits over ordinary Si-Fe, ferrite and MPP cores such as: ? High frequency flux density (1.56 T) ? Low profile- enables weight and volume reductions of up yo 50 % ? Low temperature rise-enabling smaller compact designs ? Low loss-resulting from micro-thin metallic glass ribbon (25 urn) Nickel-iron alloys are the most versatile of all soft magnetic materials for electromagnetic applications. Only the alloys with above 30% nickel are widely used because lower nickel contents there is a lattice transformation occurs as a function of temperature. This transformation exhibits temperature hysteresis and hence there in no well-defined Curie temperature. As a result of this complication the alloys in this range are not widely used. Three groups of these alloys are commonly encountered. Their nickel contents are close to 80%, 50% or in range 30-40%. The permeability is highest for the alloys close to 80%. The saturation magnetization is highest in 50% Ni. The electrical resistivity is highest in the 30% Ni range. These are three magnetic properties which are of most interest in soft magnetic material applications and so the alloys used are often close to one of these compositions depending on the specific application. Three kinds of these magnetic materials, amorphous metal, ferrit and 80% nickel-iron alloys are used in switched mode power supply transformer design and compared in the view of core losses, core weight, their effect to copper losses, total losses of the transformer over unit magnetic core and efficiency. XVI

Benzer Tezler

  1. Taşınabilir elektronik cihazlar için USB güç dağıtımı dönüştürücüsü tasarımı ve meta-sezgisel yöntemlerle optimizasyonu

    Design and meta-heuristics based optimisation of USB power delivery converter for portable electronic devices

    ÖMER SAİD AYDIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MEHMET ONUR GÜLBAHÇE

  2. A holistic design optimization method for LLC converters in light electric vehicle chargers

    Hafif elektrikli araç şarj cihazlarındaki LLC dönüştürücüler için bütünsel bir tasarım optimizasyon yöntemi

    ABDULSAMED LORDOĞLU

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. DERYA AHMET KOCABAŞ

    DOÇ. DR. MEHMET ONUR GÜLBAHÇE

  3. Design and analysis of topologies and control algorithms used in ev fast charging systems

    Elektrikli araç hızlı şarj sistemlerinde kullanılan topolojiler ve kontrol algoritmalırının analizi ve tasarımı

    ÖZGÜR CAN MİLLETSEVER

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MURAT YILMAZ

  4. Tam köprülü bir dc - dc çevirici geliştirilmesi ve gerçeklenmesi

    Full-bridge dc-dc converter development and implementation

    SADIK ÖZDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ÖZGÜR ÜSTÜN

  5. Design and implementation of LLC resonant converter and high frequency transformer

    LLC rezonans çeviricisi ile yüksek frekans transformatörünün tasarımı ve gerçeklenmesi

    NUR ELİF TOPUZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. GÜVEN KÖMÜRGÖZ KIRIŞ