Tekstil boyama atıksularının arıtılabilirliği
Başlık çevirisi mevcut değil.
- Tez No: 75251
- Danışmanlar: DOÇ. DR. FATOŞ GERMİRLİ BABUNA
- Tez Türü: Yüksek Lisans
- Konular: Çevre Mühendisliği, Environmental Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1998
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Çevre Mühendisliği Bilim Dalı
- Sayfa Sayısı: 140
Özet
ÖZET Endüstrileşen ve gelişen ülkelerde tekstil endüstrisi önemli bir yere sahiptir. Kompleks yapısından ve farklı proseslerde çok çeşitli kimyasalların kullanılmasından dolayı, tipik bir atıksu olarak tanımlanması zordur. Biyolojik arıtma, özellikle aktif çamur prosesi günümüzde tekstil atıksularının arıtımında yaygın olarak kullanılmaktadır. Tekstil atıksularının kimyasal arıtımı, gelen atıksuyun karakterine göre arıtım veriminin değişken olmasından dolayı nadir olarak uygulanmaktadır. Ayrıca, arıtım maliyeti ve yüksek konsantrasyonlarda kimyasal madde kullanıldığından dolayı oluşan çamur miktarı yüksek olmaktadır. Fakat atıksuyun biyolojik arıtmayı engelleyecek yada performansını düşürecek şekilde toksik maddeler içermesi durumunda kimyasal arıtma uygulanması yararlı olmaktadır. Bu çalışmada, pamuklu örgü kumaş boyama ve akrilik elyaf boyama yapan iki tesise ait boyama atıksularının arıtılabilirlikleri detaylı olarak incelenmiştir. Deneysel çalışma; Konvansiyonel atıksu karakterizasyonunun yanısıra biyolojik ve kimyasal arıtılabilirliği içermektedir. Biyolojik arıtılabilirlik çalışmaları kapsamında atıksuların KOl bileşenleri, kinetik ve stokiometrik katsayıları belirlenmiştir. Birinci bölümde, yapılan çalışmanın önemi vurgulanarak, amaç ve kapsamı açıklanmıştır. İkinci bölümde literatür araştırması adı altında Tekstil Endüstrisinde altkategorizasyon, bu altkategorilere ait atıksu kaynak ve özellikleri, benzer atıksularda yürütülmüş arıtılabilirlik çalışmaları, KOİ bileşenleri, kinetik ve stokiometrik katsayıların belirlenmesi konularına yer verilmiştir. Deneysel çalışmaları içeren üçüncü bölümde, iki tesise ait atıksulara konvansiyonel atıksu karakterizasyonu, arıtılabilirlik çalışmaları yapılarak KOl bileşenleri ile kinetik ve stokiometrik katsayılar belirlenmiştir. Dördüncü bölümde, deneysel çalışmanın değerlendirilmesi yapılarak sonuç ve öneriler verilmiştir. xııı
Özet (Çeviri)
TREATABILITY OF TEXTILE DYEING WASTEWATERS SUMMARY Textile industry has a great importance for both industrialized and developing countries. Due to the complexity of its nature and the large variety of chemicals used in different operations, it is difficult to define a typical wastewater. In the literature survey part, pollution-based subcategorization approaches have been compared with each other and the variability of textile industry subcategories were evaluated in terms of wastewater generation and characterization. Treatability studies performed on similar industries have been investigated. Methods given in literature on COD fractionation and assessment of kinetic and stoichiometric coefficients have been presented. In this study, two different dyeing wastewaters originating from acrylic fiber dyeing and woven knit fabric dyeing were evaluated in terms of, pollutant loads wastewater characteristics, chemical and biological treatabilities. In the characterization study, experiments were conducted on the grab samples whereas treatability studies were performed on composit samples obtained from the industry. Within the scope of the study, kinetic and stoichiometric parameters (pH, b», Yh) and COD fractions ( involving soluble and particulate biodegredable, Ss, Sh, Xs soluble and particulate non-biodegredable Si, X| forms) were determined by applying lab-scale experiments to the composit wastewater samples taken from two different dyeing processes. Investigated processes have different water usages and chemical consumptions. The detailed process profiles are given in the third section. From a modelling point of view, stoichiometric parameters such as half saturation constant Ks, half saturation hydrolysis rate Kx, maximum hydrolysis coefficient, kh which cannot be estimated by experimental procedures, were assessed by curve fitting on Oxygen Utilization Rate (OUR) profiles.. Chemical Oxidation Chemical oxidation is a process in which the oxidation state of a substance is increased. Conversely, chemical reduction is the process of which reducing the oxidation state. XIVThe purpose of oxidation in wastewater treatment is convert undesirable chemical species to species which are neither harmful nor otherwise objectionable. Most frequently it is neither necessary nor practical to carry the oxidation process to absolute completion. Depending on the oxidant and the oxidizing conditions, however, compounds of much lower toxicity and less objectionable characteristics are formed as intermediate oxidation products. In the chemical oxidation, the reaction of a ferrous or ferric salt with H2O2 produces OH as shown in the following equations. Fe(ll) + H202 + H!“ Fe(lll) + OH +H20 Fe(lll) + H202 ”Fe(ll) + 02H + H+ Fe(lll) + OOH » Fe(ll) + 02 + H+. Chemical Coagulation and Precipitation Coagulation has been defined as the addition of a chemical to a colloidal dispersion which results in particle destabilization by the reduction in forces which tend to keep particles apart. The process involves forming either flocculant suspensions of compounds which entrap desired pollutants and carry them out of solution or the formation of insoluble precipitates of the pollutants themselves. The optimum operating conditions for coagulation is defined with Jar test. Thoroughly characterize the wastewater with respect to the parameters of concern, such as COD, suspended solids. A coagulant is selected and determined the approximate minimum dosage for which a floe will be formed. The neutralization curve for the wastewater and quantify the acidity or alkalinity of the selected coagulant. Coagulation with Aluminum Compounds: When alum is added to water, it is believed that the aluminum ions enter into a series of hydrolytic reactions with water to form a series of multivalent- charged hydrous oxide species. AI2(S04)3 ^j » 2AI3++ 3(S04)2“ H20, ? H+ + OH”Al 3+ + H?Q- ? AI(OH)2+ + H+ Al 3+ +2H20 4 > AI(OH)2+ + 2H+ Al 3+ +3H20 ? AI(OH)3 + 3H+ XVAl 3+ +4H20 > AI(OH)4“ + 4H+ Coagulation with Iron: Iron salts, particularly ferric chloride, react similarly to the aluminum reactions. Fe3+ + H20 ? Fe(OH)2+ + H+ Fe 3+ + 2H20 ? Fe(OH)2+ + 2H+ Fe 3+ + 3H20 ? Fe(OH)3 + 3H+ Fe 3+ + 4H20 » Fe(OH)4”+ 4H+. Determination of Readily Biodegredable COD, SSo The method of determination of readily biodegredable substrate (SSo) depends upon the observation of OUR profile. OUR profile may be experimentally managed to stay approximately constant during the consumption of Ss and drops to a second plateau when Ss is completely depleted. The readily biodegredable substrate concentration can be calculated from the area under the OUR curve. From the figure 1, DO| reflects the utilization rate when the maximum growth rate is sustained. The readily biodegredable substrate, Ss can be calculated from the equation, AOl (Vml + Vww) Sso=i-Yh“ v^ where AOi : mass of oxygen consumed by Ss Vww: volume of wastewater in the mixture (L3) Vmi.”volume of mixed liquor in the mixture (L ) XVI250 H - I- J - I - I- Time (minute) Figure 1 Determination of Ss with OUR profile. Determination of the endogenous respiration rate, bH The method of determining bn depends upon digesting the biomass in an aerated batch reactor and measuring OUR values, periodically. After plotting the change of OUR values with time, bH can be calculated from the slope (Figure 2). In OUR = In [ 1.42 (1-fe).bH.XH ] - bH.t &, Time(day) Figure 2 Determination of bH. Determination of maximum specific growth rate, jIh The maximum specific growth rate, pH can be determined by means of respirometric measurements at an appropriate F/M ratio. The method which is developed by KAPPELER and GUJER (1992), relies on seeding wastewater with a small amount of biomass in an aerobic reactor. From the linearized form of the expression, ftH-bH can be determined as, XVll, 0UR, ln-ÖTO^(^H-b8)., The OUR profile that belongs to Plant 1 is given in Figure 3. o 'e 100- 200 Time(minute) 300 Figure 3 Determination of pH-bH. The Heterotrophic Yield Coefficient, YH During the OUR assesment of the readily biodegredable substrate determination, soluble COD analysis were performed on filtrate samples. It is assumed that electron acceptor consumption was conducted on readily biodegredable substrate. In this way, Yh is calculated with the use of following expression, Yh = 1- AO1 + AO2 ACOD(soL) 0 20 40 60 80 Time(minute) Figure 4 Determination of YH XVM. Determination of Soluble Inert COD Fractions The Inert COD Fractions Various methods are proposed to define the influent soluble COD component. The readily biodegradable substrate is exhausted directly by the heterotrophs and the heterotrophs use it for growth of the biomass. The slowly biodegradable substrate is changed to the readily biodegradable substrate by hydrolyzed for using. The soluble inert organic matter is consist of the soluble inert organic matter (S|) and the soluble microbial products (Sp) of the wastewater. The soluble microbial products construction has not been understood completely. The experiment requires two aerated batch reactors, one of them is filtered wastewater reactor, and the other one is unfiltered wastewater reactor. In both reactors the total and soluble COD are monitored for an enough period for determination of the biodegradable substrate is ended. After this period the reactors have only initial inert COD and residual products. Each reactor has include minimum biomass concentration which acclimated to the wastewater before the experiment. The appropriate F/M (substrate to biomass) ratio is LOgCOD/gVSS.day and the amount of the biomass concentration for the acclimation is between 1 0 - 50 mg/lt. The other method for determination of S| and X| is also has three aerobic batch reactors of unfiltered wastewater, filtered wastewater and glucose. All the reactors have include minimum biomass concentration which acclimated to the glucose-wastewater mixture. The same periods are monitored like the other method. At the end of the experiment when all biodegradable substrates in the three reactors are decreased, the differences between the residual COD levels between filtered and glucose reactors give the initial inert COD.. Determination of Slowly Biodegredable COD Fractions, SHo, XSo Slowly biodegredable organic fractions, Sho, Xso of total COD are determined from mass balance. This fraction can be calculated from, Cso = Sso + Xso and Sto = Sso + Sio + Sho where Cso : Total COD (mg/l) ST0 : Total Soluble COD (mg/l) Sho : Rapidly Hydrolyzable COD (mg/l) XIXXso : Slowly Hydrolyzable COD (mg/l) Sio : Soluble Inert COD (mg/l) In the modelling approach, slowly biodegredable COD is not differentiated as rapidly and slowly biodegredable COD fractions. Stoichiometric parameters such as Ks, Kx, kh are determined by curve fitting.. Conclusions Experimental characterization studies, as outlined in Table 1, showed that the wastewaters generated from Plant land Plant 2. Table 2 outlines the pollution profiles of the plants studied, in terms of wastewater generated and conventional pollution loads. Table 2. Pollution profiles of textile plants Parameters Plant 1 Plant2 Q (ma/ton fabric) Total COD load (kg COD/ton fabric) Suspended solids load (kg SS/ton fabric) TKN load (kg TKN/ton fabric) T-Phosphorus (kg P/ton fabric) 86 197.6 11.78 1.20 0.387 9.5 18.0 0.855 0.684 0.039 Chemical pretreatment of textile wastewaters are rarely employed because of variable performance of chemical treatment depending on incoming water quality. On the other hand, the cost of treatment and resulting sludge are high concentrations of chemicals required. However chemical treatment is deemed to be beneficial when wastewater contains toxic compounds which adversely affect the operation and performance of the biological treatment. In our case, the toxic compounds are dyes, retarder and softener. Softener and retarder have chemically similar characteristics and can be collectively measured in terms of cationic surface active matter. Chemical coagulation and chemical oxidation studies are outlined in Table 3. XXIn the context of the recent modelling approach, COD fractionation is a prerequisite for the assessment of the organic load, since the total COD includes a wide array of organics with different biodegration rates as well as inert compounds of influent origin or generated during biological treatment as residual microbial products. The results indicated that cotton knit fabric dyeing and acrylic fiber dyeing processes have different characters. Table 4 shows that COD fractionation may be instrumental in revealing totaly different organic matter compositions with respect to biodegradability for Plant 1 and Plant 2 seemingly having the same total COD content. Table 4. Experimental results related to COD fractionation Direct respirometric measurements yield Yh, jih and bn values specifically defining textile effluents; values of Ks, kh and Kx can only be determined by curve fitting on the basis of model evaluation of the experimental OUR profiles. Kinetic and stoichiometric data experimentally determined for the different textile wastewaters are outlined in Table 5. Table 5. Kinetic and Stoichiometric Coefficients XXI
Benzer Tezler
- Baskı boyama atıksularının inert KOI bileşenlerine fenton prosesinin etkisi
The effect of fenton process on the inert COD fractions of print-dyeing textile wastewater
YAVUZ ALİ YILMAZ
Yüksek Lisans
Türkçe
2009
Çevre MühendisliğiCumhuriyet ÜniversitesiÇevre Mühendisliği Bölümü
DOÇ. DR. FEHİMAN ÇİNER
- Tekstil endüstrisi boyama atıksularının karakterizasyonu ve biyolojik arıtılabilirliği
Characterization and biological treatability of textile dyeing wastewaters
BERNA YAPRAKLI
Yüksek Lisans
Türkçe
1997
Çevre Mühendisliğiİstanbul Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DOÇ. DR. FATOŞ GERMİRLİ BABUNA
- Treatability of dyeing process wastewater from textile sector by ceramic membrane
Yünlü tekstil sektöründeki boyama prosesi atıksularının seramik membranlarla arıtılabilirliğinin araştırılması.
AHMED M.S. ALBAHNASAWI
Doktora
İngilizce
2020
Çevre MühendisliğiGebze Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
Prof. Dr. EBUBEKİR YÜKSEL
- Boyahane atık sularının ileri oksidatif yöntemlerle dekolorizasyonu
Decolorisation of dyehouse effluent by advanced oxidative methods
PINAR KURCAN
Yüksek Lisans
Türkçe
2006
Tekstil ve Tekstil MühendisliğiUludağ ÜniversitesiTekstil Mühendisliği Ana Bilim Dalı
PROF. DR. PERVİN ANİŞ
- Dispers boyar madde içeren tekstil atıksularının ileri oksidasyon yöntemi ile arıtılabilirliğinin incelenmesi
Investigation of treatability of textile wastewater containing disperse dyestuff by advanced oxidation method
ZHALA ALI-ZADA
Yüksek Lisans
Türkçe
2019
Çevre MühendisliğiSakarya ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
PROF. DR. İSMAİL AYHAN ŞENGİL