Geri Dön

Mini sınıf elektrikli insansız hava araçları için batarya kapasitesi kestirimi

State of charge estimation for mini class unmanned air vehicle

  1. Tez No: 752535
  2. Yazar: MUHARREM AYKAN KÜLÜNK
  3. Danışmanlar: PROF. DR. COŞKU KASNAKOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 122

Özet

Yeniden doldurulabilir ikincil bataryalar; cep telefonu, dizüstü bilgisayar gibi elektronik cihazların, taşınabilirlik ihtiyacını karşılamak amacıyla birincil bataryaların ekonomik ve uzun ömürlü alternatifleri olarak piyasaya çıkmış olsa da günümüzde hava araçlarından otomobillere kadar elektrikle çalışan her türlü sisteme güç vermektedir. İkincil bataryalara, yeniden doldurulabilme yeteneği aynı zamanda limitlerinin dışına zorlandığında kolayca yanma ve patlama gibi güvenlik zafiyetini de beraberinde getirmiştir. Yeniden doldurulabilir bataryaları güvenli ve verimli olarak kullanmak amacıyla durumunu anlık olarak izleyen ve kontrol edebilen batarya yönetim sistemleri görev yapmaktadır. Batarya yönetim sistemleri, sensörler vasıtasıyla yük altındaki bir bataryanın terminalinden akımını, gerilimini sürekli olarak ölçer. Bataryanın deşarjı esnasında aşırı boşalmasını ve çok yüksek akım çekilmesini önler. Aynı şekilde şarj esnasında da aşırı şarj olmasını ve yüksek akım ile şarj edilmesini engellemek için çalışmaktadır. Şarj esnasında limitlerin dışına çıkılmasını önlemek dışında, birden fazla hücrenin seri ya da paralel bağlanması ile elde edilmiş batarya paketinde, hücrelerin dengeli olarak şarj edilmesinden de sorumludur. Batarya yönetim sistemleri, güvenliği sağlama görevinin yanı sıra; bataryanın anlık kapasitesi, sağlığı, kalan ömrü gibi durumlarını hesaplamak için tahmin algoritmaları çalıştırmaktadır. Tahmin edilmeye çalışılan batarya durumları içerisinden batarya kapasitesi, bataryayı kullanan aracın görevine başlamadan önce uygun planlamayı yapabilmesi ve görev esnasında uygun stratejiyi belirleyebilmesi için oldukça kritik bir parametre olarak ön plana çıkmaktadır. Batarya kapasitesini hesaplamak için literatürde; Coulomb sayacı, açık devre gerilim tahmini, elektrokimyasal empedans spektroskopi, elektriksel eşdeğer devre modelleri, elektrokimyasal hücre modelleri, uyarlamalı filtre temelli kestirim ya da yapay zekâ temelli tahmin yöntemleri bulunmaktadır. Bu çalışma kapsamında, kestiricinin donanımı ve gerçek zamanlı yazılımı hazırlanarak, sabit kanatlı elektrik motor tahrikli insansız hava aracı üzerinde denenmiştir. Tahmin algoritmasının gerçek zamanlı olarak bir mikrodenetleyici üzerinde koşması sebebiyle, önerilen tahmin yöntemlerinden, doğruluk hassasiyet ve karmaşıklık takası göz önünde bulundurularak, uyarlamalı filtre temelli kestirim yöntemi olan Kalman filtresi uygulanmıştır. Batarya model parametrelerinin ölçülmesi ve test edilmesi amacıyla laboratuvar ortamı kurulmuş ve benzetim çalışmaları yapılmıştır. Hava aracı üzerinde bulunan batarya kestirici donanımının uçuş testi ile doğrulaması yapılarak sonuçları değerlendirilmiştir.

Özet (Çeviri)

Rechargeable secondary batteries; It has been introduced to the market as economical and long-lasting alternatives to primary batteries in order to meet the portability needs of electronic devices such as mobile phones and laptops. Today it powers all kinds of electrically powered systems, from aircraft to automobiles. Secondary batteries, the ability to be recharged, also brought safety weaknesses such as easily burning and bursting when forced beyond their limits. In order to use rechargeable batteries safely and efficiently, battery management systems that can instantly monitor and control their status are in operation. Battery management systems continuously measure the current and voltage from the terminal of a battery under load by means of sensors. It prevents excessive discharge and very high current draw during discharge of the battery. Likewise, it works to prevent overcharging and charging with high current during charging. Apart from preventing going beyond the limits during charging, it is also responsible for the balanced charging of cells in the battery pack obtained by connecting more than one cell in series or parallel. Battery management systems, in addition to the task of providing safety; It runs estimation algorithms to calculate the instantaneous capacity, health, remaining life of the battery. Among the battery situations that are tried to be estimated, the battery capacity stands out as a very critical parameter for the vehicle using the battery to make the appropriate planning before starting its mission and to determine the appropriate strategy during the mission. In the literature to calculate the battery capacity; There are Coulomb counter, open circuit voltage estimation, electrochemical impedance spectroscopy, electrical equivalent circuit models, electrochemical cell models, adaptive filter based estimation or artificial intelligence based estimation methods. In this study, the hardware and real-time software of the estimator were prepared and tested on a fixed wing electric motor driven unmanned aerial vehicle. Since the estimation algorithm runs on a microcontroller in real time, the Kalman filter, which is an adaptive filter-based estimation method, has been applied, taking into account the trade-off between accuracy, sensitivity and complexity among the proposed estimation methods. In order to measure and test battery model parameters, a laboratory environment was established and simulation studies were carried out. The battery estimator hardware on the aircraft was verified by flight test and the results were evaluated.

Benzer Tezler

  1. Süper kondansatörle güçlendirilmiş mikro/mini sınıf bir insansız hava aracı için hibrit güç sistemi matematiksel modeli

    Hybrid power system mathematical model for a super capacitor-powered micro/mini class unmanned aerial vehicle

    SALİHA CANSU GÖRGÜLÜ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Havacılık MühendisliğiEskişehir Osmangazi Üniversitesi

    Havacılık Bilimi ve Teknolojileri Ana Bilim Dalı

    DOÇ. DR. IŞIL YAZAR

    PROF. DR. TAHİR HİKMET KARAKOÇ

  2. Güneş enerjisiyle desteklenen insansız hava aracı tasarım ve üretimi

    Solar powered UAV design and production

    FATİH BAYKAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Enerjiİstanbul Teknik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    PROF. DR. ALİM RÜSTEM ASLAN

  3. Drone propeller recognition through machine learning with millimeter wave radar

    Milimetre dalga radarı kullanılarak makine öğrenmesi ile drone pervanesi tanıma ve kimliklendirme

    FATMA ÖZÜDOĞRU

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiEskişehir Teknik Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. TANSU FİLİK

  4. Farklı insansız hava araçları ile elde edilen görüntülerin otomatik fotogrametrik yöntemlerle değerlendirilmesi ve doğruluk analizi

    Examination of images obtained from different unmanned air vehicles via automatic photogrammetric methods and accuracy analysis

    DENİZ BİLGE KILINÇOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. ELİF SERTEL

  5. Model predictive control of quadrotor UAV linear model

    Lineer model quadrotor İHA'nın model öngörülü kontrolü

    ARDEN KUYUMCU

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. İSMAİL BAYEZİT