Geri Dön

Bir fazlı asenkron motorun dinamik davranışları

Başlık çevirisi mevcut değil.

  1. Tez No: 75345
  2. Yazar: ALKAN DEMİRCİOĞLU
  3. Danışmanlar: PROF. DR. EMİN TACER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1998
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 104

Özet

ÖZET Günümüzde çok geniş bir kullanım alanına sahip olan bir fazlı asenkron motorun dinamik davranışlarının incelenmesi tezin ana konu sudur. Çalışma ilkesi bakımından karmaşık olan yapısı; bir fazlı asenk ron motoru incelenmesi çok daha zor ve titiz bir çalışma gerektiren mo tor sınıfına sokmaktadır. Her elektrik makinasında olduğu gibi bir fazlı asenkron motorun da gerek sürekli halde gerekse geçici halde incelen mesi mümkündür. Ancak dinamik davranışların sağlıklı bir şekilde etüd edilebilmesi makinanın geçici hal durumunda yapılacak incelemeler ile mümkündür. Bu sebeple bu tezde bir fazlı asenkron motorun sürekli hal yapısı hakkında verilen bilgiye oranla geçici hal incelemesi ağırlık ka zanmaktadır. Bir fazlı asenkron motorun dinamik davranışlarının incelenmesi sı rasında; inceleme kolaylığı bakımından bir fazlı asenkron motor, simet rik olmayan iki fazlı asenkron motor olarak düşünülmüştür. Bu sebeple bir fazlı asenkron motorun dinamik davranışlarını incelemek amacıyla yapılacak olan simulasyonda, genel anlamda simetrik olmayan iki fazlı asenkron makina modeli kullanılmıştır. Arzu edildiğinde genel anlam daki simetrik olmayan iki fazlı asenkron makina modelinden, gerek mo tor gerekse generatör çalışmalardaki dinamik davranışlar; bunu takiben durum uzayı modelleri elde edilebilir. Yapılan bu tez çalışmasında bir fazlı asenkron motorun durum uza yı modeli bu kabul altında kurulmuştur. Tezin son aşamasına gelindi ğinde elde edilen durum uzayı modelinin; günümüz bilgisayarlarında özel bir simulasyon programı olan SIMULINK'te gerçekleştirilen simu lasyonu ile bir fazlı asenkron motorun dinamik davranışlarının analizi yapılacaktır. ıx

Özet (Çeviri)

SUMMARY DYNAMIC BEHAVIOUR OF SINGLE PHASE INDUCTION MOTOR The dynamic behaviour of single phase induction motor will be established in the whole investigation of this thesis. Moreover a simulation is going to be held in order to analyze the dynamic behaviour of the single phase induction motor at the end of this thesis. The methods which will enable us to check the dynamic behaviour of the single phase induction motors will be discussed in details in the further chapters. During the complete researchment of this thesis the main topic will be investigated in four different chapters. In the first chapter the operational principle of the single phase induction motor will be explained. Also in the first chapter, an understandable information is going to be given about the double revolving field of single phase induction motor. As in the whole principle of electrical machinery; there are two different operational states also in single phase induction motors. One of them is steady-state and the other one is the transient-state. These two totally different states define the general characteristics of a machine. Since we are especially interested in dynamic behaviour of the motor in the thesis; we will be dealing with the transient analysis rather than the steady-state analysis of the machine. Therefore during the thesis the necessary mathematical model of the motor for the simulation will be ta ken into account with the above mentioned occasion. The dynamic beha viour of the single-phase induction motor will be explained especially in the second and the third chapter. So the steady-state characteristics of the single phase induction motor will be briefly held in the first chapter. Concerning with steady-state analysis; the operational principle, the electromagnetic torque, the equivalent circuit and the performance analysis of the single phase induction motor will be explained in the firstchapter. Also a short information will be given about several types of single-phase induction motors, and their own application areas. Fractional-and subfractional-horsepower motors are found in many types of equipment in the home, office, and industry. They differ from integral-horsepower motors in the wide variety of designs and characteristics available, prompted by the economics and spocial requirements of their applications. Subfractional-horsepower motors, especially, come in a wide variety of designs and configurations. Many fractional-horsepower ac machines are designed for and used in single- phase applications. In the home, single phase induction motors are found in refrigerators, air conditioners, fans, washers, and dryers. Although they are simple in construction, their single phase operation makes them more difficult to analyze than larger three-phase motors. It's better to understand the torque ratings, the efficiency, the price, and several areas of application of different types of single-phase induction motors with the help of a classification table. Due to this table; split phase, capacitor-start, capacitor-run, capacitor-start capacitor-run, and shaded pole types of single phase induction motors are shown [2]. As a second step of the thesis the whole equations which will define the dynamic behaviour of the single-phase induction motor will be obtained. With a general acceptance; the single-phase induction motor is thought as an unsymmetrical two-phase induction motor. As known from the beginning of the research, a single phase induction motor has two unsymmetrical stator windings at the starting position. The reason why the single-phase induction motor has two unsymmetrical stator windings is absolutely to obtain a sufficient starting torque. In order to give a starting torque to a single-phase induction motor; there should be two different impedance valued stator windings with a phase-shift between each other. If these two stator windings stay during the whole operation of the motor after starting, then the single-phase induction motor can totally be mentioned as an unsymmetrical two-phase induction motor. With the support of the second stator winding which is called auxiallary winding; the performance of the motor will be increased during the whole operation period. In the second and third chapters, the equations which describe the XIdynamic performance of single phase induction motors are given with the help of unsymmetrical two-phase induction machine phenomena. The theory of operation of the unsymmetrical two-phase induction machine is applicable to a wide variety of single-phase induction motors such as split-phase motor, capacitor-run motor, and a motor with single- phase stator winding. Therefore, the equivalent circuit of the unsymmetrical two-phase induction machine will be developed first and then modified and extended to describe the dynamic performance of various types of single-phase induction motors when it is desired. Under this acceptance the stator and the rotor voltage equations will be written respectively [7]. For stator; Vm = pAra + İm. rim (D Va = p?la + İ a- Ha (2) For rotor; Var - pKr + İar. T22 (3) Vbr = P^-br + İbr. T22 (4) In the above voltage equations, X is the total flux linkages of a particular winding; rim is the resistance of the main stator winding; ria is the resistance of the auxiliary stator winding; T22 is the rotor winding resistance; and p is the derivation operator. With the sinusoidally distributed windings portrayed as single equivalent coils, the mutual coupling between an equivalent stator coil and an equivalent rotor coil can be expressed as a sinusoidal function of the angular displacement between their magnetic axes. Therefore, the flux-linkage equations can be written as follows [4], [7]; XII*m = Lta-İm + Mm2. Cos8r.İar - Mm2. Sin8r. İbr (5) K = Lfc.İa + Ma2. Siner.İar + Ma2. Cos0r. İbr (6) Kr = Mm2. Coser.İm + Ma2. Sin9r. İa + L2. İar (7) \\>T = -Mm2. Siner.İm + Ma2. Coser. İa + Iq,. İbr (8) In this case, if either the stator or the rotor of a machine is unsymmetrical, time-varying coefficients will appear in the voltage equations in all reference frames except the one fixed in the machine where the asymmetry exists [7]. So, when dealing with the single-phase induction motor, similarly in the case of an unsymmetrical two-phase induction machine, it is convenient to select a reference frame fixed in the stator. A change of variables which will transform the stator and rotor voltages to a reference frame fixed in the stator can be expressed as[7]; Stator; Iqs = Im fds = -fa Rotor; fqr = far. Cos0r - fbr. Sin0r fdr = -far. Sin9r - fbr. Cos6r It is clear that these transformation equations are valid regardless of the voltages and currents. With these equations of transformation there is a direct relationship between the actual stator variables and the ds and qs variables. In the case of the unsymmetrical two-phase induction machine, the stator windings do not have the same number of effective turns. It may be desirable to refer all quantities to one of the stator windings; in this development, the q quantities will be referred to Xlllthe m winding, and the d quantities will be referred to the a winding. Also while performing the state-space model of the motor, the reactances will be preferable rather than the enductances for calculation simplicity. With the help of the equations of transformation; the voltages and the currents of both stator and the rotor are transformed to a reference frame fixed in the stator. After transforming them; these transformed equations can be shown in a marix form in order to obtain the state- space model of single-phase induction motor [41, [8]. 'qs vds V^r Vdr rim + 0 Wb Wb a-. Xi ria+- p Wb J-.XMm (~ Wr Wb Xmi m 0 x2 Wb. Xmi 0 m Wb 0 XMa Wr P 1 Wr. XMa) I“2m + X3. X4 a wb Wb Wb Wb wr.XMa a X3 Wb r2a+”Wb X4 Ids r qr İ'dr (9) With this developed matrix model, we can easily build up the state- space model of single phase induction motor by taking V'dr and V'qr equal to zero, since its rotor windings are short-circuit. This developed matrix model is general model. From this model, the desired model of a single- XIVphase induction motor will be obtained by taking the rotor voltages as zero values. With the help of this matrix form of the single-phase induction motor; the useful derivation equations will be obtained in order to form the exact state-space model of the motor. In chapter three, these derivation equations are used and the whole state-space model of the single-phase induction motor is expressed. In the fourth chapter, a numerical model is obtained with an example motor whose parameters are given [4], [7]. With this numerical model a simulation will be done with SIMULINK at the end of the thesis. SIMULINK can also be briefly explained as a simulating program for dynamic systems. As an extension to MATLAB, SIMULINK adds many features specific to dynamic systems while retaining all of MATLAB's general purpose functionality. With SIMULINK we can define a model and analyze it. A typical session starts in SIMULINK by defining a model, and then proceeds to analyze the performed model. At the end of the thesis; the previously performed numerical model in chapter four, will be modified in SIMULINK and the desired behaviour of the motor will be investigated. SIMULINK File £dit Options Simulation Style xvc o u“o. a. < x D _ ex > 5. c - ?”n c £ u < CJ £ u -a cd o -J cu o u 3“O o- 2 S* O CU) p- c oo ^ u 05 O o I-, 1- U O > *-. O cJ CL U-, C o -a u u CQ c u *- » CO u U O H o -§ Pu 00 c -a 5 cu °;3 a J oo - 3 *> c c u. = (J -C cj 3 6 £ Öü' J2.S c c u OO e :3 CD B L-, o 2- s - cr oo u -a o 60 5 >. c ”cu > c o _ y.-.“S.2 c. -a oo a o S V a Di) c on l_ O >-, U > C O o -a c rt v 00 '5 c c o CJ V) -a &0 ° 0JJ u o (/I 4J oo oo~ rt CJ O O S 3 o- 2 D. c3.S ~ o 0 ”* U CJ U (Q

Benzer Tezler

  1. Vektör denetim yöntemi ve doğrudan moment denetim yöntemi uygulanan bir asenkron motorda hız denetim performanslarının karşılaştırılması

    Comparison of speed control performances of an induction motor using vector control and direct torque control methods

    HAKAN AÇIKGÖZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik MühendisliğiFırat Üniversitesi

    Elektrik Eğitimi Ana Bilim Dalı

    DOÇ. DR. BEŞİR DANDIL

  2. Orta güçlü üç fazlı sincap kafesli asenkron motorlarda eksantrik arızanın sonlu elemanlar yöntemi ile tespiti ve analizi

    Detection and analysis of eccentric failure in medium power threephase squirrel cage asynchronous motors using finite elementmethod

    DAVUT SUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiHarran Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BUKET SONBAŞ COBB

  3. Modeling of charging system and control of an alternator of a vehicle

    Araç şarj sisteminin modellenmesi ve alternatör kontrolü

    MUSTAFA GÖKAY UNUTULMAZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. LALE ERGENE

  4. Development of electric powertrain selection algorithm for electric vehicles

    Elektrikli araçlarda güç grubu seçim algoritması geliştirilmesi

    METEHAN ŞAHİN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÖZGÜR ÜSTÜN

  5. Tek fazlı şebekeden beslenen üç fazlı asenkron motorun dinamik davranışı

    Dynamic behaviour of a three phase induction motor with single phase supply

    ENGİN YALÇIN

    Yüksek Lisans

    Türkçe

    Türkçe

    1991

    Elektrik ve Elektronik MühendisliğiKaradeniz Teknik Üniversitesi

    Y.DOÇ.DR. CEMİL GÜRÜNLÜ