Sistemlerin kayma modlu kontrolü ve uygulamaları
Başlık çevirisi mevcut değil.
- Tez No: 75581
- Danışmanlar: DOÇ. DR. MÜJDE GÜZELKAYA
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1998
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Kontrol ve Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 83
Özet
ÖZET Bu çalışmada kayma modunda kontrol yöntemi ele alınmıştır. Bu kontrolde, durum değişkenlerinden oluşan bir yüzey seçilmekte ve sistemin kontrol işareti bu yüzey üzerinde süreksizliğe sahip olacak biçimde tasarlanmaktadır. Kayma modunda harekette başlangıç koşullarından bağımsız olarak süreksizlik düzlemine ulaşılır. Bu düzlem üzerinde sistem hareketim sürdürür. Burada önemli olan sistemi bu yüzeye ulaştırmaktır. Kayma modunda, kontrol sistemi geribesleme ve süreksizlik düzlemi katsayılarının bulunması gerekir. Sistemin mertebesi artıkça bu sabit katsayıların bulunması güçleşmektedir. Kayma modunun kararlılığı için bir takım koşulların da yerine getirilmesi gerekmektedir. Çoğu sistemleri dış bozucular etkiler. Kayma modunda bu bozucuların yok edilmesi için kontrol işareti iki kısma ayrılır. İlk kısım dış bozucuların olmadığı duruma aittir, ikinci kısım ise bu bozucuların etkilerini yok eder. Bu çalışmada Matlab Simulink kullanılarak birinci ve ikinci mertebeden sistemlerin kayma modlu kontrolüne ilişkin simulasyonlara yer verilmiştir. Ayrıca bir deney seti için uygun kayma modu kontrolü tasarlanarak, SIMATIK S 7-200 ailesi PLC ile programlanmış ve gerçek zamanda bir uygulama da gerçekleştirilmiştir. VIII
Özet (Çeviri)
SUMMARY This MSc Thesis is a study of sliding mode that can arise in discontinuous dynamic systems or in systems described by differential equations with discontinuous right-hand sides. In recent years, increasing attention has been given to systems where control actions are discontinuous functions of the coordinates and disturbances. In this study, the first chapter is an introduction of a sliding mode. The equation of sliding mode and the stability in the control systems of linear stationary plants is given in chapter two. Chapter three is concerned with control of a plant subjected to external disturbances. Finally, in chapter four, some applications are given which are studied at Matlab Simulink and a second order real system is controlled with a sliding mode using a PLC ( programmable Logic Controller). The design problem in systems with discontinuous control actions is usually reducible to selection of surfaces in the phase space for the control function to have discontinuities. When certain relations are valid, a special kind of motion (called sliding mode) may arise. This may be, the case, if in the vicinity of the surface where the control function has discontinuousties the state trajectories are directed towards this surface ( fig. 1). Fig 1. The sliding mode surface Once on the discontinuity surface, the describing point evidently cannot move along any trajectroy adjacent to that surface over any period, however short or finite. In response to any shift, a motion always starts that return the describing point to the discontinuity surface. In the system under discussion the describing point can move IXonly along the discontinuity surface. This motion is conventionally referred to as the sliding mode [2]. A dynamic system of a general type with a discontinuous scalar control described by the equations x'=f(x,t,u) where xand /are n-dimensional column vectors, u is a scalar function with discontinuities on the surface s(x)=0 = Ju + (x, t) with. s(x) > 0İ |u-(x,t) whh.s(x)0 t->+0 t->-0 This condition specifies the region of sliding on a discontinuity surface. The motion equation of a system with a scalar control is of the form -» -> x'=/(x,t)+b(x,t)u Where x is an n-dimensional state vector with components x,,...,xn; f and b are n- dimensional vectors with components fx,...,f '“ and b,,...,bn ; u is a scalar control. Once the discontinuity surface has been selected, the design problem is reduced to the choice of such continuous functions u+ (x,t) and u”(x,t) for which the decribing point reaches this surface from any initial position and a sliding mode exists in any point of the surface. The conditions described before for sliding mode to exist in the scalar case are of the form [ sign(grad s. b )] u+ < - - ^- x | grad s. b |. / j Ün - -. -grads.f -* sıgn(grad s. b )] u > - - - x | grad s. b |The motion equation of a linear system with scalar control for time-invariant plants with no external sections is of the form: x ' = [ A] x + b u where coefficients of the matrix A and the vector b are constant and the control u has discontinuities on the plane s=0. ->T -> s= c x,c = [c“c2,....,cj and cn =1 The control function is a piecewise linear function of all coordinates of the system. ”=-2>i xi i=l The coefficients of this function have discontinuities on the plane s=0 ¥i = a= x: s>0.Pi xiST -> ->T -»i ->T ->n (c b)a{ >(c a)-Cj(c a) ->T ->T ->i ->T ->n (cb)Pi T->i c a ->T ->a = c a i = k+l,...,n-l If the coefficients a{ and p\ in the control function and the coefficients C; of the plane equation satisfy the above conditions the sliding mode is met in each point of the switching plane. The coefficients in equations of the sliding plane cannot be selected arbitrarily and the constraints do not necessarily include sliding planes with the desired kind of motion in sliding mode. It is very important under what conditions motion in sliding mode features stability. XIFor a certain linear control function u=^yixi (y;=const, 1< k < n-1) solution of i=l the following system of n equations with respect to n-1 variables c,,...,cn., (cn= 1) leads to an equation of a sliding plane with stable motion. cT(?-'byi)~cl\=Q (i=l,-..,k) cT a - Ci\=0 (i = k+l,...,n-l) cT a - X=0 Here X is one of the eigenvalues of the system and is real and in the others the real parts are negative. If by proper selection of coefficients for equation of the sliding plane, the motion in sliding mode obtains the desired property, stability, the design problem is completly solved provided that the describing point reaches the sliding plane from any initial position. It is evident that in this statement the problem of asymptotic stability for the entire system is reduced to finding the reaching conditions. Assume that at the initial time t0 the describing point is not on the switching plane or, s(t0) * 0 then reaching problem is reduced to finding the conditions under which there is always a time tj such that s(M = 0 evidently with t > t, the state will be steered to the origin in sliding mode. The case where describing point asymptotically approaching point, or lim s(t)=0 t-*0O is worthy of special attention. This condition insures asymtotic stability of the system. If asymptotically stable motion in sliding mode is a feature of the sliding plane, then to make system asymptotically stable a control should be found such that one of the above conditions is met. xiiIt is comman knowledge that any real control system is subjected to exogenous effects. This may be either setpoints to be tracked by the system or all kinds of disturbances in various points of the control system. It is hard to obtain the control under the condition that the disturbance cannot be measured. The motion of the system is described like this with external disturbances x' = [A] x + b u+[D] F where matrix A and D and vector b are constant. In a number of cases, the external disturbances F can be measured. This data is used in developing the control law. On the plane, ->T -> s= c x =0 let the control be a function of the system coordinates and external disturbances. u= ux +uF where ux is a control for free motion with F=0, uF is an additional control which is a function of the measured disturbances. ux =-2>i Xj -5, i=l »F = -2>if fj j=l Each of the coefficients \j/4 ve \|/j can take two values either a or p" and these coefficients change in compliance with the control law. i=l,2,....,k j =1,2,....,! XlllABSTRACT Shtp building Quality Standard was drawn up in order to set ship's quality control modality for all ships built in Turkish Ship Building Industries. When applying ship's quality control in each stage of construction, can be found the defects and diminished their effects that direct to a final quality accordance with documented requirements. We hope this STANDARD application will, improve our products quality, productivity increasing and production activities economic efficiency. This thesis consist of six chapters: Chapter 1 Introduction to ISO : In this chapter get the idea of what the ISO is; history of ISO, why we needed as well as what does it cover. Chapter 2 Ship building and repair quality standard for new construction : How the standards can be applied to new ship building and requirements of this standard Chapter 3 Ship building and repair quality standard for existing ship : The way standards can be applied in repair of vessel Chapter 4 Major process of ship building : In this chapter major processes are informed. Chapter 5 Inspection and test items : Does are the check Bsts for new building as well as the existing ships. Chapter 6 Quality Assurance manual for an example company (A.D.İ.K.) In the event of conflict, however the requirements of the contract, building specification, approved drawings of agreed letters/memoranda shall prevail over this Turkish Shipyards. xm
Benzer Tezler
- High precision motion control of mechatronic systems in presence of general uncertainties: Application with a heavy-duty parallel robot
Genel belirsizliklerin olduğu mekatronik sistemlerin yüksek hassasiyetle kontrolü: Paralel robot uygulaması
KAMİL VEDAT SANCAK
Doktora
İngilizce
2022
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. ZEKİ YAĞIZ BAYRAKTAROĞLU
- Integrated vehicle control unit development with active safety functions for electric vehicles
Elektrikli araçlar için aktif güvenlik sistemleri içeren tümleşik araç kontrol ünitesi geliştirme
MUHAMMET MUSTAFA ÜNVER
Yüksek Lisans
İngilizce
2022
Otomotiv Mühendisliğiİstanbul Teknik ÜniversitesiSavunma Teknolojileri Ana Bilim Dalı
PROF. DR. METİN GÖKAŞAN
- Yapıların sismik izolasyonunda ileri denetim algoritmalarının uygulanması
Application of advanced control algorithms in seismic isolation of structures
OĞUZ YAKUT
Doktora
Türkçe
2007
Makine MühendisliğiFırat ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. HASAN ALLİ
- Design and implementation of magnetic bearings in rotary blood pump
Dönel kan pompasında manyetik rulmanların tasarlanması ve uygulanması
HARIS SHEH ZAD
Doktora
İngilizce
2017
Elektrik ve Elektronik MühendisliğiKoç ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ALPER TUNGA ERDOĞAN
PROF. DR. İSMAİL LAZOĞLU
- An Investigation on the selection of the fine tuning parameters of STC
Özayarlamalı kontrol edicilerin hassas ayar parametrelerinin seçimi üzerine bir çalışma
HİKMET İSKENDER
Doktora
İngilizce
1998
Kimya Mühendisliğiİstanbul Teknik ÜniversitesiKimya Mühendisliği Ana Bilim Dalı
PROF. DR. DURSUN ALİ ŞAŞMAZ