Veri tabanlarında kullanılan metin arama yöntemlerinin performans karşılaştırması
Performance comparison of text search methods used in databases
- Tez No: 759968
- Danışmanlar: DR. ÖĞR. ÜYESİ ALTAN MESUT
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Trakya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 84
Özet
Bu tezde, İlişkisel ve NoSQL veri tabanlarındaki genellikle metin indeksi adı verilen özel indeksler ile gerçekleştirilen Tam Metin Arama (FTS: Full Text Search) yöntemlerinin incelenmesi ve performans karşılaştırması yapılmıştır. Metin indekslerinde, kelimeler veya terimler bulundukları belgeler ile eşleştirilir ve gerekirse kelimelerin belgelerde kaç kez ve hangi konumlarda yer aldığına dair bilgiler de saklanabilir. Veri tabanında bir kelime veya terim arandığında, tüm dokümanları taramak yerine metin indeksleri kullanılarak arama işlemi çok daha hızlı yapılır. Son yıllarda birçok veri tabanı yönetim sistemi tam metin arama desteği sunmaya başlamış ve özellikle bu amaç için kullanılan Elasticsearch gibi arama motorları da ortaya çıkmıştır. Tezin performans karşılaştırması bölümünde MSSQL Server, MySQL, MongoDB ve Elasticsearch veri tabanlarına makale özeti gibi küçük boyutlu ve kitap gibi büyük boyutlu çok sayıda metin verisi eklenmiştir. İlgili yöntemler ile metin indeksleri oluşturulduktan sonra test için belirlenen kelimeler bu indeksler üzerinde aranıp süre sonuçları elde edilmiştir. Aynı kelimeler Regex/Like türünde metin arama sorguları ile de aranmış ve sonuçlar indeks kullanılarak elde edilen sonuçlarla karşılaştırılmıştır. Çalışmanın sonucunda ise hangi veri tabanı yönetim sistemi üzerinde hangi Tam Metin Arama veya Regex/Like yönteminin daha performanslı bir şekilde çalıştığı ortaya çıkarılmıştır.
Özet (Çeviri)
In this thesis, Full Text Search (FTS: Full Text Search) methods in Relational and NoSQL databases, which are usually performed with special indexes called text indexes, are examined and performance comparisons are made. In text indexes, words or terms are matched to the documents in which they are located, and if necessary, information about how many times and in which locations the words are located in the documents can also be stored. While searching a word or term in a database, the search process is performed much faster using text indexes instead of scaning all documents. In recent years, many database management systems have started to offer FTS support, and search engines such as Elasticsearch, which are especially used for this purpose, have also emerged. In the performance comparison section of the thesis, a large number of small-sized text data such as article abstracts and large-sized text data such as books have been added to MSSQL Server, MySQL, MongoDB and Elasticsearch databases. After the text indexes were created with the relevant methods, the words determined for the test were searched on these indexes and the time results were obtained. The same words were also searched with Regex/Like type text search queries and the results were compared with the results obtained using the index. As a result of the study, it has been revealed that which Full Text Search or Regex/Like method works better on which database management system.
Benzer Tezler
- Experiment retrieval in genomic databases
Genomik veri tabanlarında deney geri getirimi
DUYGU DEDE ŞENER
Doktora
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. HASAN OĞUL
- Gazi Tömer 'Yabancılar için Türkçe' öğretim seti ile ilgili yapılan araştırmalar üzerine bir meta-sentez çalışması
A meta-synthesis study on the researches of Gazi Tömer 'Yabancılar için Türkçe'
ŞEYMA BİLİŞ
Yüksek Lisans
Türkçe
2022
Eğitim ve ÖğretimOndokuz Mayıs ÜniversitesiTürkçe ve Sosyal Bilimler Eğitimi Ana Bilim Dalı
DOÇ. DR. MUHAMMET RAŞİT MEMİŞ
- A content-based web image retrieval system for person identification structured on the SSIM, PSNR ve SNR
Kişi tanıma için SSIM, PSNR ve SNR tabanlı bır web görüntü erişim sistemi
RAWA AMJAD AMIN
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSiirt ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ YILMAZ KAYA
- Akademik veri tabanları: Türkiye ve Azerbaycan örnekleri analizi
Academic databases: Analysis of Turkey and Azerbaijan samples
İLTİFAT İBRAHİMOV
Yüksek Lisans
Türkçe
2021
Bilgi ve Belge YönetimiFırat ÜniversitesiTeknoloji ve Bilgi Yönetimi Ana Bilim Dalı
DR. ÖĞR. ÜYESİ CEM AYDEN
- Maternal azatioprin kullanımı sonrası gebelik sonuçlarının ve neonatal komplikasyonların değerlendirilmesi: Sistematik derleme ve meta-analiz
Evaluation of pregnancy outcomes and neonatal complications after maternal azatioprine exposure: A systematic review and meta-analysis
GİZEM BAŞARAN
Tıpta Uzmanlık
Türkçe
2021
Eczacılık ve FarmakolojiEge ÜniversitesiTıbbi Farmakoloji Ana Bilim Dalı
PROF. DR. AYŞE EROL