Geri Dön

Fusion of face and iris biometrics for personidentity verification

Başlık çevirisi mevcut değil.

  1. Tez No: 760618
  2. Yazar: MARYAM ESKANDARİ
  3. Danışmanlar: PROF. DR. ÖNSEN TOYGAR
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: multimodal biometrics, face recognition, iris recognition, feature extraction, information fusion, Particle Swarm Optimization, match score level fusion, feature level fusion, decision level fusion
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: Doğu Akdeniz Üniversitesi-Eastern Mediterranean University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 145

Özet

Özet yok.

Özet (Çeviri)

This thesis focuses on fusion of multiple biometric systems in different fusion levels especially score level fusion and feature level fusion. Generally, multimodal biometrics based systems aim to improve the recognition accuracy using more than one physical and/or behavioral characteristics of a person. In fact, fusion of multiple biometrics combines the strengths of unimodal biometrics to achieve improved recognition accuracy. This thesis improves the recognition accuracy by proposing different schemes in score level fusion, feature level fusion, decision level fusion and combination of different fusion levels such as score and feature level fusions. Face and iris biometrics are used to obtain a robust recognition system by using several feature extractors, score normalization and fusion techniques in four different proposed schemes. Global and local feature extractors are used to extract face and iris features separately as unimodal system and then the fusion of these modalities is performed on different subsets of face and iris image databases. Subpattern-based PCA (spPCA), modular PCA (mPCA) and Local Binary Patterns (LBP) methods are used as local feature extractors. Beside these local methods, global feature extractors such as Principal Component Analysis (PCA) and subspace Linear Discriminant Analysis (LDA) are also used to compare the performance of global feature extractors on face and iris images separately. On the other hand, Libor Masek's iris recognition system is employed on iris images in some schemes to extract iris features. In order to enhance the recognition accuracy of unimodal and multimodal systems in some proposed schemes, Particle Swarm Optimization (PSO) is also implemented as feature selection procedure in reducing the dimension of feature vectors and subsequently improving the recognition performance. iv The performance of different schemes is validated on several datasets using recognition accuracy and Receiver Operator Characteristics (ROC) analysis. These schemes are based on Weighted-Sum Rule, Sum-Rule, Product-Rule along with Tanh and Min-Max normalization in matching score level fusion. Additionally, FaceFeature Vector Fusion (Face-FVF) or Iris-Feature Vector Fusion (Iris-FVF) with and without PSO feature selection method are used in feature level fusion. Moreover, Majority voting is employed in decision level fusion. The datasets to perform the experiments are selected from ORL, FERET, BANCA, CASIA, UBIRIS and CASIA-Iris-Distance databases. In addition, combination of different databases is used to have different conditions in terms of illumination and pose.

Benzer Tezler

  1. Multimodal biometric verification system using fusion of face and signature information

    Yüz ve imza bilgileri kullanarak çok kipli kullanıcı doğrulama

    KAĞAN ÖZTÜRK

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAkdeniz Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSTAFA BERKAY YILMAZ

  2. Deep convolutional neural network based unconstrained ear recognition

    Derin evrişimsel sinir ağı tabanlı kısıtsız kulak tanıma

    FEVZİYE İREM EYİOKUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HAZIM KEMAL EKENEL

  3. Çoklu-biyometrik yöntemlerle kimlik doğrulama

    Verification by using multi-biometric methods

    KADİR SERCAN BAYRAM

    Doktora

    Türkçe

    Türkçe

    2018

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BÜLENT BOLAT

  4. Voice recognition system with score level fusion methods and embedded system design

    Skor seviyesi füzyon metotları ile ses tanıma sistemi ve gömülü sistem tasarımı

    CİHAN AKIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. MÜRVET KIRCI

  5. Feature extraction and fusion techniques for patch-based face recognition

    Yama-tabanlı yüz tanıma için öznitelik çıkarımı ve birleştirme teknikleri

    BERKAY TOPÇU

    Yüksek Lisans

    İngilizce

    İngilizce

    2009

    Elektrik ve Elektronik MühendisliğiSabancı Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. HAKAN ERDOĞAN