Multi-dimensional electrical impedance dataanalysis for amyotrophic lateral sclerosisdisease diagnosis
Başlık çevirisi mevcut değil.
- Tez No: 761311
- Danışmanlar: PROF. VİSAKAN KADİRKAMANATHAN
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: The University of Sheffield
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 184
Özet
Özet yok.
Özet (Çeviri)
Amyotrophic Lateral Sclerosis (ALS) is the most common type of motor neurone disease (MND), which affects the motor neurones that control the voluntary skeletal muscles. ALS patients with bulbar involvement experience weaknesses in muscles that control speech, swallowing, and breathing. Recent attempts in using Electrical Impedance (EI) techniques have shown promising results for early diagnosis of the bulbar involvement of the ALS disease. A non-invasive, handheld EIM device is being developed as a potential biomarker for ALS bulbar involvement by a group in Sheffield. The device has a novel electrode configuration setting that employs a combination of eight electrodes used on both surfaces of the tongue to obtain the spectral EI measurements. This thesis proposes analysis of the acquired data using machine learning and system identification methods. The aim is to find patterns in data to assess bulbar dysfunction for diagnosis, and longitudinal assessment of the disease. A data specific outlier removal algorithm was implemented as part of preliminary data analysis, and electrode configurations that did not comply with the EI characteristics of the tongue muscle along the full spectrum are eliminated. Classification of the patients and healthy volunteers demonstrated that the novel electrode configurations were capable of differentiating the two groups. Classification using the feature selection method not only gave better accuracy, but also revealed the most discriminatory frequency combination for disease diagnosis. Impedance data was modeled with an Integrated Fractional-Order Transfer Function. A model selection scheme over the model space was employed to avoid underestimation, overestimation, and over-parametrization. Estimated parameters were used to identify disease related patterns. Analysis shows the device's capacity to diagnose the disease and the non-parametric data classification has shown better accuracies than the parametric data classification.
Benzer Tezler
- Otomatik aritmi dedeksiyonu
Başlık çevirisi yok
GÜNNUR ALANYALI
Yüksek Lisans
Türkçe
1993
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiDOÇ.DR. MEHMET KORÜREK
- Multi criterion optimization and some applications
Başlık çevirisi yok
AHMET ORUNÇ
Yüksek Lisans
İngilizce
1991
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiPROF.DR. ZAFER ÜNVER
- Çok sargılı transformatörler için kısa devre empedansı ve sargılara etkiyen kuvvetlerin belirlenmesi için yeni bir yaklaşım.
A new approach for determining the short-circuit impedance and electromagnetic forces for multi-winding transformer.
KAMRAN DAWOOD
Yüksek Lisans
Türkçe
2017
Elektrik ve Elektronik MühendisliğiKocaeli ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
DOÇ. DR. BORA ALBOYACI
- Enerji iletim sistemlerinde açma-kapama olaylarının analizleri için hat parametrelerinin EMTP yardımıyla hesabı
Calculation of line parameters for the analyses of power system switching transient using EMTP
KORAY ŞERBETÇİOĞLU
Yüksek Lisans
Türkçe
1995
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiDOÇ.DR. ADNAN KAYPMAZ
- Periyodik yapıların ansoft HFSS kullanarak analizi
EBG structures in antenna engineering
ENVER ÖZDEMİR
Yüksek Lisans
Türkçe
2010
Elektrik ve Elektronik MühendisliğiMustafa Kemal ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. EMİN ÜNAL