Geri Dön

Diş görüntüleri üzerinde görüntü işleme ve derin öğrenme yöntemleri kullanılarak çürük seviyesinin sınıflandırılması

Classification of caries level using image processing and deep learning methods on dental images

  1. Tez No: 763849
  2. Yazar: ÜMRAN ÜNSAL
  3. Danışmanlar: DOÇ. DR. KEMAL ADEM
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Diş Hekimliği, Computer Engineering and Computer Science and Control, Science and Technology, Dentistry
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Aksaray Üniversitesi
  10. Enstitü: Sosyal Bilimler Enstitüsü
  11. Ana Bilim Dalı: Yönetim Bilişim Sistemleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 67

Özet

Ağızda bulunan bakterilerin ürettiği asitler dişlerin mineral dokusunu bozarak diş çürüklerine neden olmaktadır. Zamanla kişilerin ağzında bakteriler birikir ve bu bakteriler gıdalarla birleşir. Ağız bakımına yeterli özen gösterilmediğinde diş minesi zarar görür ve diş çürümeleri gerçekleşir. Yakın bir döneme kadar kökü iltihaplanmış hasta dişler, diğer bölgelere zarar vermemesi amacıyla çekilmekteydi. Fakat gelişen görüntüleme teknikleri sayesinde diş çekimi yapılmadan uygulanan tedavilerin sayısı ve başarı oranı hızla artmıştır. Diş çürükleri insanların hayatlarını olumsuz yönde etkilemektedir. Bu çalışmada röntgen görüntüleri üzerinde diş çürüklerinin hızlı bir şekilde tespit edilerek hastaların diş kayıplarının minimuma indirilmesi amaçlanmaktadır. Diş görüntüleri ile derin öğrenme modelleri kullanılarak uygulanan tedavi yöntemleri dolgu, kanal, köprü sınıflarına ayrılmıştır. Ayrıca diş görüntülerine ön işlem olarak luv-v kanalı ve adaptif histogram eşitleme işlemi uygulanarak derin öğrenme modellerinin performanslarının artırılması amaçlanmıştır. 553 tane diş röntgeninden oluşan veri seti üzerinde yapılan segmentasyon işlemlerinin ardından, derin öğrenme modellerinden Faster R-CNN ve Yolov5 modelleri ile deneysel çalışmalar gerçekleştirilmiştir. Yapılan deneysel çalışmalar sonucunda; Faster R-CNN %86.7 doğruluk değerine ulaşılırken, Yolov5 modelinde ise %92.7 oranında doğruluk oranına ulaşılmıştır. Görüntü işleme ve Yolov5 hibrit modelinin uygulanması sonucunda elde edilen karar destek sistemi diş kliniklerinde kullanılabilecektir.

Özet (Çeviri)

The acids produced by the bacteria in the mouth cause dental caries by disrupting the mineral tissue of the teeth. Over time, bacteria accumulate in the mouth of people and these bacteria combine with food. When adequate care is not given to oral care, tooth enamel is damaged and tooth decay occurs. Until recently, infected teeth were extracted in order not to damage other areas. However, thanks to developing imaging techniques, the number and success rate of treatments applied without tooth extraction has increased rapidly. Tooth decay affects people's lives negatively. In this study, it is aimed to quickly detect dental caries on x-ray images and to minimize the tooth loss of the patients. Treatment methods applied using dental images and deep learning models are divided into filling, canal and bridge classes. In addition, it is aimed to increase the performance of deep learning models by applying the Luv-v channel and adaptive histogram equalization process as a preprocessing to tooth images. After segmentation processes on the data set consisting of 553 dental x-rays, experimental studies were carried out with Faster R-CNN and Yolov5 models, which are deep learning models. As a result of the experimental studies; while Faster R-CNN reached %86.7 accuracy, Yolov5 model achieved %92.7 accuracy. The decision support system obtained as a result of image processing and application of the Yolov5 hybrid model can be used in dental clinics.

Benzer Tezler

  1. Görüntü işleme yöntemleri ile yüzey üzerine oyulmuş karakterlerin tanınması

    The recognition of engraving character on the surface with image processing methods

    MAHMUT SAMİ YASAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HASAN ERDİNÇ KOÇER

  2. Panoramik X-ray diş görüntülerinde diş bölgesinin ve dişlerin makine öğrenimi ve derin öğrenme ile bölütlenmesi

    Segmentation of teeth region and teeth boundaries via machine learning and deep learning in panoramic X-ray dental images

    ALİ GÜVEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTOBB Ekonomi ve Teknoloji Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İMAM ŞAMİL YETİK

  3. Deep convolutional neural network based representations for person re-identification

    Kişiyi yeniden tanıma için derin evrişimsel sinir ağı tabanlı modeller

    ALPER ULU

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HAZIM KEMAL EKENEL

  4. Derin öğrenme yöntemine dayalı yapay zekâ algoritmalarıyla panoramik radyografilerde incelenen sabit protetik restorasyonlar altında oluşan çürüklerin tespiti

    Detection of caries formed under fixed prosthetic restorations examined on panoramic radiographs with artificial intelligence algorithms based on DEEP learning method

    BETÜL AYHAN

    Diş Hekimliği Uzmanlık

    Türkçe

    Türkçe

    2023

    Diş HekimliğiKırıkkale Üniversitesi

    Protetik Diş Tedavisi Ana Bilim Dalı

    PROF. DR. SAADET SAĞLAM ATSÜ

  5. Bulanık su altı görüntülerinde derin öğrenme tabanlı balık tespiti

    Deep learning based fish detection in turbid underwater images

    TANSEL AKGÜL

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    Uydu Haberleşmesi ve Uzaktan Algılama Ana Bilim Dalı

    DOÇ. DR. BEHÇET UĞUR TÖREYİN