Spatiotemporal features and deep learning methods for video classification
Başlık çevirisi mevcut değil.
- Tez No: 770941
- Danışmanlar: PROF. JOHN Q GAN
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: University of Essex
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 169
Özet
Özet yok.
Özet (Çeviri)
Classification of human actions from real-world video data is one of the most important topics in computer vision and it has been an interesting and challenging research topic in recent decades. It is commonly used in many applications such as video retrieval, video surveillance, humancomputer interaction, robotics, and health care. Therefore, robust, fast, and accurate action recognition systems are highly demanded. Deep learning techniques developed for action recognition from the image domain can be extended to the video domain. Nonetheless, deep learning solutions for two-dimensional image data cannot be directly applicable for the video domain because of the larger scale and temporal nature of the video. Specifically, each frame involves spatial information, while the sequence of frames carries temporal information. Therefore, this study focused on both spatial and temporal features, aiming to improve the accuracy of human action recognition from videos by making use of spatiotemporal information. In this thesis, several deep learning architectures were proposed to model both spatial and temporal components. Firstly, a novel deep neural network was developed for video classification by combining Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Secondly, an action template-based keyframe extraction method was proposed and temporal clues between action regions were used to extract more informative keyframes. Thirdly, a novel decision-level fusion rule was proposed to better combine spatial and temporal aspects of videos in two-stream networks. Finally, an extensive investigation was conducted to find out how to combine various information from feature and decision fusion to improve the video classification performance in multi-stream neural networks. Extensive experiments were conducted using the proposed methods and the results highlighted that using both spatial and temporal information is required in video classification architectures and employing temporal information effectively in multi-stream deep neural networks is crucial to improve video classification accuracy.
Benzer Tezler
- Human activity recognition using deep learning
Derin öğrenme ile insan aktivitesi tanıma
MURAT YALÇIN
Yüksek Lisans
İngilizce
2018
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HÜLYA YALÇIN
- Attention modeling with temporal shift in sign language recognition
İşaret dili tanımada zamansal kayma ile dikkat modellemesi
AHMET FARUK ÇELİMLİ
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. LALE AKARUN ERSOY
- Nighttime fire detection from video
Videodan gece yangın tespiti
AHMET KERİM AĞIRMAN
Doktora
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAbdullah Gül ÜniversitesiElektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ KASIM TAŞDEMİR
- Video processing algorithms for wildfire surveillance
Orman yangını gözetleme amaçlı video işleme algoritmaları
OSMAN GÜNAY
Doktora
İngilizce
2015
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. A. ENİS ÇETİN
- Video deinterlacing and demosaicing by deep learning
Derin öğrenme ile video binisimsizlestirme ve demozaikleme
RONGLEI JI
Doktora
İngilizce
2024
Elektrik ve Elektronik MühendisliğiKoç ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. AHMET MURAT TEKALP