Image segmentation and classification based on CNN model to detect brain tumor
Başlık çevirisi mevcut değil.
- Tez No: 772615
- Danışmanlar: PROF. DR. SHADİ M S HİLLES
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: İstanbul Okan Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 88
Özet
Tipik olarak, bir beyin tümörünün ciddiyetini sınıflandırmak ve belirlemek için son beyin ameliyatından önce biyopsi yapılmaz. Makine öğrenimi ve yapay zeka gibi daha az müdahaleci tümör tespit teknolojilerinin gelecekte erişilebilir hale gelmesi bekleniyor. CNN algoritması, resimleri (CNN) segmentlere ayırma ve sınıflandırmada olağanüstü performans gösteren bir makine öğrenme tekniğidir. Beyin tümörü segmentasyonu ve sınıflandırması için aşağıdaki mimari, burada tartışma için önerilmektedir. Üç farklı tümör modalitesine dayanmaktadır. Yeni oluşturulan ağı, önceki sistemlerden çok daha temel olan T1 kontrastlı manyetik rezonans görüntüleme kullanarak analiz etmek için seçildi. Ağın genellenebilirliği, daha büyük bir görüntü veri tabanı ve (on) konuya özgü çapraz doğrulama tekniklerinden biri kullanılarak, aramada kullanılacak şekilde değerlendirildi. 10 katlı çapraz doğrulama tekniği, kayıt odaklı çalışmada en iyi sonucu verdi. yüzde 96,56 doğrulukla daha büyük veri kümesinin çapraz doğrulaması, onu en doğru yöntem haline getiriyor. Büyük genelleme kapasitesi ve kısa yanıt süresi ile yeni geliştirilen CNN mimarisi, tıbbi tanısal radyologlar için harika bir karar destek aracı olabilir.
Özet (Çeviri)
Typically, no biopsy is performed prior to final brain surgery in order to classify and establish the seriousness of a brain tumor. It is anticipated that less intrusive tumor detection technologies, such as machine learning and artificial intelligence , will become accessible in the future. The CNN algorithm is a machine learning technique that has shown remarkable performance in segmenting and classifying pictures (CNN). The following architecture for brain tumor segmentation and classification is proposed for discussion here. It is based on three distinct tumor modalities. It was chosen to analyze the newly formed network using T1 contrast-enhanced magnetic resonance imaging, which is far more basic than the previous systems. The network's generalizability was assessed using a larger image database and (one of the ten) topic-specific cross-validation techniques that will be used in the search.. The 10-fold cross-validation technique produced the best result in the record-oriented cross-validation of the larger dataset, with an accuracy of 96.56 percent, making it the most accurate method. With its great generalization capacity and short response time, the newly developed CNN architecture may show to be an amazing decision support tool for medical diagnostic radiologists..
Benzer Tezler
- Burned area segmentation and severity estimation in post fire landscapes using deep learning methods
Derin öğrenme yöntemleri ile yangın sonrası alanlarda yanık bölge segmentasyonu ve şiddet tahmini
MURAT MERT YURDAKUL
Yüksek Lisans
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. HAMZA OSMAN İLHAN
- Breast sentinel lymph node cancer detection from mammography images based on quantum wavelet transform and atrous pyramid convolutional neural network
Başlık çevirisi yok
MOHAMMED NAYYEF QASIM
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. OĞUZ BAYAT
- Alın frezeleme işleminden geçmiş parçaların görüntü işleme yöntemiyle yüzey kalitesinin kontrolü
Surface quality control of face-milled parts using image processing
MOHAMMAD MOSAAB ABO ALHOUS
Yüksek Lisans
Türkçe
2025
Mekatronik MühendisliğiSelçuk ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ZİYA ÖZÇELİK
- Derin öğrenme yöntemi ile optik uydu görüntülerinden gemi tespiti
Ship detection by optical satellite images with deep learning method
OSMAN DUMAN
Yüksek Lisans
Türkçe
2019
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. MESUT KARTAL
- Efficient deep learning approaches for signal and image analysis applications
Sinyal ve görüntü analizi uygulamaları için verimli derin öğrenme yaklaşımları
ONUR CAN KOYUN
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. BEHÇET UĞUR TÖREYİN