Geri Dön

Derin öğrenme tabanlı yüz algılama sistemiyle temassız ateş ölçümü

Non-contact fever measurement with deep learning based face detection system

  1. Tez No: 779674
  2. Yazar: KUBİLAY TUNA
  3. Danışmanlar: DOÇ. DR. BAYRAM AKDEMİR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Konya Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 69

Özet

Pandemik hastalıkların hemen hemen hepsinin ortak semptomu yüksek ateştir. Böylece en basit şekilde, anormal vücut sıcaklığı olarak nitelendirilen 38 °C ve üstünde ateşe sahip kişilerin tespiti, bulaş riskini ortadan kaldırarak salgının kontrol altına alınmasını sağlayacaktır. Fakat yüzlerce kişinin giriş çıkış yaptığı kalabalık insan topluluğunun olduğu ortamlarda bu kişilerin kontrolünü sağlamak güçtür. Bu durum iş gücü, maliyet gerektirerek zaman kaybına neden olmaktadır. Haliyle içinde bulunduğumuz gelişmiş teknoloji dünyasında, bu süreci insan etkisini ortadan kaldırarak otomatikleştirmek gerekliliktir. Bu tezde, Covid-19 nedeniyle enfekte olmuş kişilerin yüzlerini tespit etmek için özel Single Shot Detection (SSD) modeli kullanılmıştır. Tespit edilen bu yüzler üzerinde Ensemble of Regresyon Trees (ERT) modeliyle yüz işaret noktaları belirlenerek kişinin vücut sıcaklığının en doğru olduğu göz çevresinin tespit edilmesi önerilmiştir. Son olarak, termal değer, sensör füzyonu kullanılarak temassız bir şekilde göz çevresinden ölçülmüştür. Yapılan analizler sonucunda önerilen sistemin farklı ölçüm yöntemlerine yakın sonuçlar verdiği gözlemlenmiştir (Tuna ve Akdemir, 2022).

Özet (Çeviri)

The common symptom of almost all pandemic diseases is high fever. Thus, in the simplest way, the detection of people with a fever of 38 °C and above, which is described as abnormal body temperature, will eliminate the risk of transmission, and ensure that the epidemic is brought under control. However, it is difficult to control these people in environments where hundreds of people enter and exit. This situation causes loss of time by requiring labor and cost. Therefore, in the advanced technology world we live in, it is necessary to automate this process by eliminating human influence. In this thesis, custom Single Shot Detection (SSD) was used to detect infected people faces because of Covid-19. It has been suggested to determine around the eyes area where the body temperature of the person most accurate by determining the facial landmarks with Ensemble of Regression Trees (ERT) model on these detected faces. Finally, the thermal value was measured from around the eyes area in a non-contact way using sensor fusion. As a result of the analyzes made, it was observed that the proposed system gave results close to the different measurement methods (Tuna & Akdemir, 2022).

Benzer Tezler

  1. Human presence detection in emergency situations using deep learning based audio-visual systems

    Derin öğrenme tabanlı işitsel-görsel sistemler ile tehlike durumunda insan tespiti

    İZLEN GENECİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilişsel Bilim Ana Bilim Dalı

    PROF. DR. BANU GÜNEL KILIÇ

    PROF. DR. HÜSEYİN CEM BOZŞAHİN

  2. Bilgisayar ve internet destekli uzaktan eğitim programlarının tasarım, geliştirme ve değerlendirme aşamaları (SUZEP örneği)

    Design, development and evaluating stages of computer and internet supported distance education program (on the model of SUZEP)

    BİROL GÜLNAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Radyo-TelevizyonSelçuk Üniversitesi

    Radyo Televizyon Ana Bilim Dalı

    PROF.DR. AHMET HALUK YÜKSEL

  3. Transfer learning based facial emotion recognition and action unit detection

    Transfer öğrenme tabanlı yüz ifadesinden duygu tanıma ve eylem birimi tespiti

    SÜLEYMAN ENGİN BAĞLAYİCİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

  4. Face detection and recognition based on raspberry Pi using HAAR cascading and convolution neural network

    HAAR basamaklı ve evrişim sinir ağı kullanılarak raspberry Pi tabanlı yüz tespiti ve tanıma

    RUSUL NASEER MOHAMMED ALLAMI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiGaziantep Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ERGUN ERÇELEBİ

  5. Real-time visual target identification and tracking via unmanned ground vehicle (UGV)

    İnsansız yer aracı (UGV) üzerinden gerçek zaman görsel hedef belirleme ve izleme

    NOUR ZAKARIYA AMMAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Aydın Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ OKATAN