Geri Dön

Anomali tespiti yaklaşımıyla saldırı tespiti

Intrusion detection using anomaly detection approach

  1. Tez No: 781713
  2. Yazar: BURAK EKİCİ
  3. Danışmanlar: DOÇ. DR. HİDAYET TAKCI
  4. Tez Türü: Yüksek Lisans
  5. Konular: Savunma ve Savunma Teknolojileri, Defense and Defense Technologies
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Sivas Bilim ve Teknoloji Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Savunma Teknolojileri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 92

Özet

Bilgisayar ağlarına yapılan saldırılar günden güne artarken ve saldırıların nitelikleri de sürekli olarak değişmektedir. Ağ saldırıları, bilgisayar ağlarına zarar vererek bilgi güvenliğini ortadan kaldırmaktadır. Bu durum kişiler, şirketler, kurumlar ve hatta devletler için büyük bir risk oluşturmaktadır. Ağ trafiğinin analizi ve böylece saldırıların ortaya çıkarılabilmesi için Saldırı Tespit Sistemlerinden yararlanılmaktadır. Saldırı türlerini tanıyacak şekilde oluşturulan bu sistemlerin gelişimleri de artan saldırı tiplerine göre sürekli devam etmektedir. Bu çalışmada makine öğrenmesi teknikleri yardımıyla anormallik tabanlı bir saldırı tespit sistemi oluşturulması amaçlanmıştır. Çalışma sürecinde; Yinelemeli Özellik Elemesi, İleri Yönelimli Seçim, Rastgele Orman, Karar Ağaçları, Naive Bayes, Lojistik Regresyon ve Ekstrem Gradyan Artırma gibi algoritmalardan yararlanılmış ve Doğruluk, Kesinlik, Duyarlılık ve F1 gibi metrikler ile değerlendirmeler yapılmıştır. Ayrıca model değerlendirme için ROC eğrilerinden yararlanılmıştır. Bahsi geçen bu algoritmalardan elde edilen sonuçlar karşılaştırılarak en etkili modelin bulunması için CICIDS 2017 veri seti kullanılmıştır. Çalışma kapsamında Yinelemeli Özellik Elemesi ve İleri Yönelimli Seçim teknikleriyle özellik seçimi yapılmış ve en iyi sınıflandırma sonuçları Rasgele Orman ve Ekstrem Gradyan Artırma algoritmalarından elde edilmiştir.

Özet (Çeviri)

Attacks on computer networks are increasing day by day and characteristics of them are changing continuously. Network attacks destroy information security by damaging computer network systems. This situation poses a great risk for individuals, companies, institutions and even governments. To prevent or minimize the damages of network attacks, Intrusion Detection Systems are used. The development of these systems, which are created according to attack characteristics, continues parallelly to increasing attack types. In this study, it is aimed to create an intrusion detection system based on machine learning principles with anomaly detection. Recursive Feature Elimination, Forward Feature Selection, Random Forest, Decision Tree, Naive Bayes, Logistic Regression and Extreme Gradient Boosting algorithms are used during the study and evaluations are made by Accuracy, Precision, Recall and F1 Score metrics. Also, Cross Validation and ROC Curve methods are used for the evaluation. CICIDS2017 data set is used to find the most effective model by comparing the results obtained from the mentioned algorithms. As the result of this study, it is determined that the Intrusion Detection System models, which are created by classifying the features obtained the methods of Forward Feature Selection and Recursive Feature Elimination with Random Forest and Extreme Gradient Boosting algorithms, are successful.

Benzer Tezler

  1. Operasyonel teknolojiler için güvenli mimari tasarımı

    Design secure architecture for operational technology

    MEHMET YAVUZ YAĞCI

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-Cerrahpaşa

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMED ALİ AYDIN

  2. Veri merkezi katmanlı güvenlik tasarımı ile etkin olay analizi ve yönetimi

    Efficient event analysis and management with data center layered security design

    ALİ AKPINAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKırşehir Ahi Evran Üniversitesi

    İleri Teknolojiler Ana Bilim Dalı

    DOÇ. DR. MUSTAFA YAĞCI

  3. Büyük veri log yönetiminde siber ataklara karşın saldırı tespit sistem tasarımı

    Design of an intrusion detection system against cyber attacks in big data log management

    MURAT KOCA

    Doktora

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-Cerrahpaşa

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMED ALİ AYDIN

  4. Data-driven delay estimation and anomaly detection: A study on European and Turkish air traffic

    Veri güdümlü gecikme tahmini ve anomali tespiti: Avrupa ve Türkiye hava trafiği üzerine bir çalışma

    MUHAMMET AKSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    DR. EMRE KOYUNCU

  5. Topluluk öğrenmesi yaklaşımıyla anomali belirleme

    Anomaly detection with ensemble learning approach

    NİHAT AKILLI

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İstatistikDokuz Eylül Üniversitesi

    İstatistik Ana Bilim Dalı

    DOÇ. DR. ENGİN YILDIZTEPE