Geri Dön

Sinirsel ağları kullanarak projelerde efor tahmini

Project effort estimation using neural networks

  1. Tez No: 792734
  2. Yazar: BURCU ŞENGÜNEŞ
  3. Danışmanlar: PROF. DR. NURSEL ÖZTÜRK
  4. Tez Türü: Doktora
  5. Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Bursa Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 121

Özet

Proje efor tahmini, proje yönetiminde kritik öneme sahiptir. Proje için gereken eforun tahmin edilmesi, özellikle projenin erken aşamalarında belirsizlik seviyesinin yüksek olmasından dolayı oldukça zordur. Bu tez çalışmasının amacı, fotonik sektöründe müşteriye özel makinelerin geliştirildiği projeler için efor tahmininde kullanılacak bir sistemin geliştirilmesidir. Bu çalışma kapsamında, iki ayrı yapay sinir ağı (YSA) modeli önerilmiştir. Birinci model, makine geliştirme projesinin otomasyon aşaması için gereken eforu tahminlemek üzere geliştirilmiştir. Tasarım, satın alma, üretim, otomasyon ve test aşamalarından oluşan makine geliştirme projelerinde, otomasyon aşaması yüksek belirsizlik içermektedir. Müşterinin üretimini manuel olarak gerçekleştirdiği fotonik ürünün üretim sürecinin, bir makine tarafından otomatik bir şekilde gerçekleştirilmesi için gereken süreç gereksinimlerini belirlemek oldukça zordur. Bu belirsizlik ortamında projenin otomasyon aşaması için gereken eforun tahmin edilebilmesi önem arz etmektedir. İkinci YSA modeli ise makine geliştirme projesi için gereken toplam proje eforunu tahminlemek üzere önerilmiştir. Geliştirilen iki model, gereken eforu proje ve makine karakteristiklerinden yola çıkarak tahmin etmektedir. YSA modelleri, 11 adet gerçek hayat makine geliştirme projesi ile test edilmiştir. Tahmin doğruluğunu ölçümlemek için PRED(%25) değeri kullanılmış olup, bu değer otomasyon eforu ve toplam proje eforu tahmini modelleri için sırası ile %73 ve %91 olarak hesaplanmıştır. Elde edilen veriler göz önünde bulundurulduğunda geliştirilen modeller ile umut verici sonuçlar elde edildiği sonucuna varılmıştır. Ayrıca proje yöneticileri için bu sistemin kullanımını kolaylaştırmak amacıyla YSA tabanlı bir tahmin aracı geliştirilmiştir.

Özet (Çeviri)

Estimating project effort is a crucial concern for project managers. Estimation of required work is challenging, especially in the early phases of a project, due to the high level of uncertainty and lack of experience. This study aims to develop a system for estimating project effort for customized machine development in the photonics industry. This study proposes two artificial neural networks (ANN) models, one for estimating the effort of the automation phase and the other for estimating the total project effort. Design, procurement, production, automation, and testing are the phases of machine development projects, and the automation phase is highly unpredictable. Automating a machine includes uncertainty since customers make photonic products manually, and the process is not always clear at the beginning. In such a high-uncertainty environment, estimating how much effort is required to automate a machine is crucial. The second model was developed for estimating the total project effort. The proposed models were tested on 11 real-life machine development projects. The accuracy measure, PRED(%25), showed promising results with 73% and 91% for automation effort and total project effort, respectively. Additionally, an ANN-based estimation tool has been developed to make this system easier for project managers

Benzer Tezler

  1. Adaptive neuro fuzzy inference system (anfis) applications in chemical processes

    Kimyasal proseslerde adaptif sinirsel bulanık tahmin yönteminin uygulamaları

    EVREN GÜNER

    Yüksek Lisans

    İngilizce

    İngilizce

    2003

    Kimya MühendisliğiOrta Doğu Teknik Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    PROF.DR. CANAN ÖZGEN

    PROF.DR. KEMAL LEBLEBİCİOĞLU

  2. Altitude optimization of UAVS serving as base stations using deep learning

    Derin öğrenme kullanılarak baz istasyonları olarak hizmet veren İHA'ların yükseklik optimizasyonu

    IBRAHIM SHOER

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Elektrik ve Elektronik Mühendisliğiİstanbul Medipol Üniversitesi

    Elektrik-Elektronik Mühendisliği ve Siber Sistemler Ana Bilim Dalı

    PROF. DR. BAHADIR KÜRŞAT GÜNTÜRK

  3. Diagnosis of dementia using deep neural networks with multimodal imaging and clinical data

    Çok modlu görüntüleme ve klinik verilerle derin sinir ağları kullanarak demans tanısı

    ALTUĞ YİĞİT

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ZERRİN IŞIK

    DOÇ. DR. YALIN BAŞTANLAR

  4. Forecasting stock market volatility using artificial neural networks

    Hisse senedi değişebilirliğinin yapay sinir ağları ile tahmin edilmesi

    MUSTAFA SERDAR YÜMLÜ

    Yüksek Lisans

    İngilizce

    İngilizce

    2004

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. FİKRET GÜRGEN

    DOÇ. DR. NESRİN OKAY

  5. Deep learning based three dimensional face expression recognition using geometry images from three dimensional face models

    Üç boyutlu yüz modellerinden elde edilen geometri görüntüleri kullanılan derin öğrenme tabanlı üç boyutlu yüz ifadelerini tanıma

    NEŞE GÜNEŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ULUĞ BAYAZIT