Holografik mikroskopinin hücresel analiz ve veri güvenliği performansının iyileştirilmesi
Improvement of cellular analysis and data security performance of holographic microscopy
- Tez No: 797497
- Danışmanlar: DOÇ. DR. MUSTAFA ZAHİD YILDIZ
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Biyoteknoloji, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Biotechnology, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Sakarya Uygulamalı Bilimler Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 207
Özet
Mikro dünyadaki meydana gelen etkileşimler, doğada büyük değişimleri meydana getirmektedir. Geleneksel optik mikroskoplar, bu işleyişteki biyofiziksel süreçlerin anlaşılmasında önemli araçlardır. Yıllar içinde optik mikroskoplardaki gelişmeler, mikroskobik yapıların daha ayrıntılı olarak görselleştirilmesine olanak sağlasa da temel çalışma prensiplerinde bir değişim olmamıştır. Merceksiz Dijital Eksen Üstü Holografik Mikroskopi (DIHM), geleneksel mikroskoplardaki optik bileşenlerin görevini algoritmaların üstlendiği hesaplamalı bir mikroskopi tekniğidir. Bu sistemler düşük maliyet, geniş görüş alanı ve kolay entegrasyon gibi avantajları nedeniyle in-vitro ortamlarında gerçekleştirilen hücresel uygulamalarda geniş kullanım potansiyeline sahiptir. Yüksek seviyede bilgi içeren verilerin kaydedilmesini sağlayan bu sistemlerin başarısı, görüntüleme ve veri analizi süreçlerinin birlikte yürütülmesine bağlıdır. Fakat mevcut veri işleme yöntemlerinin kısıtlamaları, DIHM ile elde edilen görüntülerin analizinde önemli kısıtlamalara ve ayrıca verilerin güvenliğinin sağlanmasında eksikliklere neden olmaktadır. Bu tez çalışmasında, DIHM'nin in-vitro hücre deneylerinde analiz başarısının iyileştirilmesi ve veri güvenliğinin sağlanması amaçlanmıştır. Bu doğrultuda bir merceksiz mikroskopi sistemi tasarlanarak sistemin karakterizasyonu standart bir çözünürlük hedefiyle ortaya konulmuştur. Hologram görüntülerin analizi ve güvenliği için üç temel uygulama alanı üzerinde durulmuştur. İlk olarak, hücre slaytlarında bulunan hücrelerin sayım ve canlılık analizlerini yüksek hassasiyette yapabilmek amacıyla geleneksel görüntü işleme yöntemleriyle desteklenmiş, Evrişimli Sinir Ağları (CNN) tabanlı hibrit bir yöntem geliştirilmiştir. Örtüşen hücreler ve hücre dışı partiküller, sayım ve canlılık analizlerine dahil edilerek analiz hassasiyeti iyileştirilmiştir. İkinci olarak, hücrelerin bireysel olarak canlılık aktivitesinin belirlenmesi için fraktal boyut tabanlı bir öznitelik hesaplama tekniği geliştirilmiştir. Önerilen yöntem, hücrelerin görüntü içinde bulunduğu konum ve rotasyondan bağımsız olarak, tüm hücre morfolojisinin tek bir öznitelikte kimliklendirilmesine olanak sağlamaktadır. Canlılık aktivitesinin sınıflandırılması amacıyla Derin Sinir Ağları (DNN) kullanılmıştır. Son olarak, yüksek çözünürlüklü hologram verileri için güvenlik, sağlamlık ve algılanamazlık açısından yüksek performans gösteren yeni bir dijital damgalama yöntemi geliştirilmiştir. Rastgele sayı üreteçleriyle güvenlik kriteri sağlanarak, frekans uzayında hibrit bir damgalama şeması önerilmiştir. Tez kapsamında literatüre kazandırılan yöntemler, veri analizi ve güvenliği alanlarına oldukça değerli katkılar sağlamaktadır.
Özet (Çeviri)
Interactions occurring in the micro world cause significant changes in nature. Conventional optical microscopes are essential for understanding this process's biophysical processes. Advances in optical microscopes have allowed the visualization of microscopic structures in more detail, but the basic working principles of microscopes have not changed. Due to the inherent limitations of lenses, which are the core components of conventional microscopes, these systems consist of highly complex and costly optical components. In recent years, developments in production technologies and computational capabilities have brought along innovative approaches in the field of microscopy. Lens-free digital in-line holographic microscopy (DIHM) is a computational microscopy technique in which algorithms take over the role of optical components in conventional microscopes. These systems have the potential to be used in cellular applications in in-vitro environments due to their advantages, such as low cost, wide field of view, and easy integration. The success of these systems, which enable the acquisition of high-level informational digital data, depends on the combination of imaging and data analysis processes. However, the most important obstacle to the widespread use of these systems in clinical and laboratory settings is the limitations of current analysis methods and data security. This thesis aims to improve the analysis success and ensure data security in in-vitro cell experiments of DIHM. Within the scope of the thesis, three application areas are mainly focused on. Methods have been developed for high-throughput analysis of cell line count and viability, high-accuracy determination of individual viability activity of cells, and secure watermarking of high-resolution digital holograms. In this direction, deep learning methods and image processing methods were used as tools. In the second part of the thesis, holography and deep learning methods were introduced and focused on the basic concepts. The methods used for forming, recording, and reconstructing diffraction patterns are explained mathematically. The criteria for the theoretical determination of the imaging area, axial and lateral resolution values in DIHM are included. Afterward, the hierarchical structure starting from the single-cell neuron model, which is the smallest processing unit of deep neural networks, and extending to multi-layered models is mentioned. Other machine learning methods used in the thesis are mentioned, and performance measurement metrics of classifiers are mentioned. The methods found in the literature regarding the use of deep learning in DIHM are mentioned, and the potential of the combination of the two fields is mentioned. In the third part of the thesis, the design parameters of the microscopy system are detailed and the proposed Convolutional Neural Networks (CNN) based hybrid method for high precision analysis of counting and viability rates of cancer cell lines is mentioned. CMOS imaging sensor and LED light source are used in the DIHM design. A microcomputer is integrated into the system to communicate these components. The angular spectrum method was used to reconstruct the holograms recorded in-line configuration. It has been demonstrated using the standard USAF 1951 resolution target that the designed system has a sufficient practical resolution for cellular imaging and analysis. The linear intensity and statistical analysis of reconstructed images of the resolution target demonstrate the characterization of DIHM. MCF-7 cell lines were grown under appropriate incubation conditions and stained with trypan blue protocol for viability analysis. Cell lines were injected into a glass at different concentrations, and their holograms were recorded with the designed system. Circular Hough Transform (CHT) was used to detect particles in the cell slide. By keeping the search space of CHT wide, it is possible to detect overlapping cells and cell-like non-cell particles. The images of the candidate particles whose positions were determined by CHT were segmented and divided into sub-images. CNN was used to classify the detected candidate particles. The topology and parameters of the designed model are detailed, and the model's classification performance is shown with various performance metrics with training, validation, and test data. At the output of the CNN model, the candidate particles were classified as living cells, dead cells, and non-cell particles. The class information of the cells obtained at the output of the CNN model is shown with the bounding box at the locations determined in the original image. According to the classification result, viability analyzes were performed with high sensitivity by determining the number of live and dead cells and the total number of cells. A graphic processor-based user interface has been designed in order to perform end-to-end, fast, and automatic imaging and analysis processes. The success of the proposed method in cell counting and viability analysis was compared with the data obtained from the ground truth system. It has been revealed that the proposed method can perform human-level analysis. In the fourth part of the thesis, a fractal dimension-based feature calculation technique was developed to determine the viability activity of cells. With the proposed methods, it is ensured that the complexity and self-similarity in the morphology of the cells can be evaluated as a criterion for determining the viability activity. In the proposed method, to determine the cells' viability regardless of their location and angle, each grey-level cell image was rotated at different angles, and their fractal dimensions were calculated. The image taken from each cell was rotated at different angles in this way, and 19 different fractal dimension values for each cell were calculated with the box-counting algorithm. The statistical significance of the method was revealed by finding the p-value of each feature as
Benzer Tezler
- Compressed sensing and learning-based methods for super-resolution structured illumination microscopy
Süper çözünürlüklü yapılandırılmış aydınlatma mikroskopisi için sıkıştırılmış algılama ve öğrenmeye dayalı yöntemler
BATURAY ÖZGÜRÜN
Doktora
İngilizce
2020
Elektrik ve Elektronik MühendisliğiSabancı ÜniversitesiElektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MÜJDAT ÇETİN
PROF. DR. SELİM SAFFET BALCISOY
- Holografik deformasyon ölçüm yöntemleriyle nüve malzemelerin performansının araştırılması
Investigating performance of core materials by using holographic deformation measurement methods
UFUK ŞAN
Yüksek Lisans
Türkçe
2015
Elektrik ve Elektronik MühendisliğiBülent Ecevit ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. ZEHRA SARAÇ
- Total internal reflection holographic microscopy for cell extension imaging
Holografik tam iç yansıma mikroskobuyla hücre uzantılarının görüntülenmesi
TOLGA GÜRCAN
Yüksek Lisans
İngilizce
2022
BiyofizikBoğaziçi ÜniversitesiFizik Ana Bilim Dalı
PROF. DR. MEHMET BURÇİN ÜNLÜ
YRD. DOÇ. DR. MUHAMMED FATİH TOY
- Intraocular lens based vision simulator using computational holographic displays
Holografik ekran kullanan intraoküler lens temelli görüntü simülatörü
DENİZ AKYAZI
Yüksek Lisans
İngilizce
2023
BiyomühendislikKoç ÜniversitesiBiyomedikal Bilimler ve Mühendislik Ana Bilim Dalı
PROF. DR. HAKAN ÜREY
PROF. DR. AFSUN ŞAHİN
- Silindirik ve üçgen prizma kanatlı ısı değiştiricilerde akış ve ısı transferinin holografik interferometri metodu ile incelenmesi
Investigation of flow and heat transfer in a compact heat exchanger with cylindrical and triangular rips with techniques of holographic interferometry
İBRAHİM KILIÇASLAN