Geri Dön

Temel veri madenciliği algoritmalarının başarımlarının endokrin veri seti üzerinde karşılaştırılması

Comparison of the performance of data mining algorithms on the endocrine data set

  1. Tez No: 798030
  2. Yazar: SİNEM CEYLAN KONAK
  3. Danışmanlar: PROF. DR. SERDAR İPLİKÇİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Pamukkale Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Kontrol ve Kumanda Sistemleri Bilim Dalı
  13. Sayfa Sayısı: 76

Özet

Gelişen teknoloji olanaklarının artması ile birlikte, birçok alanda veri depolanmaktadır. Elde edilen verilerden yol çıkılarak, anlamlı, yorumlanabilir ve insanlığın faydasına yönelik kullanılabilmesi için veri analiz yöntemlerine ve çözümlerine ihtiyaç duyulmaktadır. Teknolojinin ilerlemesiyle birlikte tıp alanında da büyük ve karmaşık veri tabanları oluşmaktadır. Veri madenciliği yöntemleri ile bu karmaşık veri tabanları içerisinden anlamlı verileri tespit etmek; bir altyapı oluşturmak, problemi tespit etmek, problemi çözmek veya bir hastalık teşhisinde daha hızlı ve çeşitli bakış açısı kazandırmaktadır. Bu tez çalışmasında Pamukkale Üniversitesi Hastanesi İç Hastalıkları Polikliniğine başvurmuş hastaların kan testleri bilgilerini içeren veri seti ele alınarak hasta profili belirlenmeye çalışılmıştır. Üzerine çalışılan hastalıklardan birine sahip olduğu bilinen bir kişinin, çalışılan diğer üç hastalık ile ilişkisi incelenmiş ve bu dört hastalık arasındaki ilişkinin gelecekte oluşabilecek rahatsızlıkların ön teşhisinde kullanılabileceği düşünülmüştür. Ayrıca çalışmada kullanılan Apriori, ECLAT, FP-Tree ve H-Mine algoritmaların veri seti üzerindeki performansları incelenmiş ve birbirleri arasında performans farkları değerlendirilmiştir.

Özet (Çeviri)

With the increase in developing technology facilities, data can be stored in many areas. Data analysis methods and solutions are needed to use it for meaningful, interpreted, and used for the benefit of humanity by way of the data obtained. With the advancement of technology, large and complex databases are formed in the developing medical. With data mining methods, detecting meaningful data from these complex databases, creating an infrastructure, detecting the problem, solving the problem, or providing a faster and various perspective in the diagnosis of a disease. In this study, the patient's profile was tried to be determined by considering the data set containing the blood test information of the patients who applied to the Internal Diseases Policlinic of Pamukkale University Hospital. A person who is known to have one of the diseases worked on the relationship between the other three diseases studied and the relationship between these four diseases is thought to be used in the preliminary diagnosis of future disorders. In addition, the performance of Apriori, ECLAT, FP-Tree, and H-Mine algorithms used in the study have been examined on the dataset and their performance differences have been evaluated against each other

Benzer Tezler

  1. Data-driven process mining for production line optimization using IIOT and big data technologies

    IIOT ve büyük veri teknolojileri kullanılarak veri odaklı süreç madenciliği ile üretim hattı uygulaması

    BEYZA YAPAKÇI

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Veri Mühendisliği ve İş Analitiği Ana Bilim Dalı

    PROF. DR. ALP ÜSTÜNDAĞ

  2. Predicting student success: A case study based on the transcript and personal data of the graduated students at computer engineering department, Atılım University, Turkey

    Öğrenci başarısının tahmin edilmesi: Atılım üniversitesi bilgisayar mühendisliği bölümünden mezun öğrencilerin transkript ve kişisel verilerine dayalı bir vaka çalışması

    ULAŞ OZAN CEYHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtılım Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. KASIM MURAT KARAKAYA

  3. Efficient estimation of Shrinkage parameters in fuzzy Ridge and fuzzy Liu regression models using α-cut-based methods under multicollinearity

    Çoklu bağıntı durumunda bulanık Ridge ve bulanık Liu regresyon modellerinde α-kesim tabanlı yöntemler kullanılarak Shrinkage parametrelerinin etkin tahmini

    AMMAR HOMAIDA

    Doktora

    İngilizce

    İngilizce

    2025

    İstatistikGazi Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. MERAL EBEGİL

  4. Recommanding new products with high sales potential in fashion retail: A machine learning approach

    Moda perakendesinde yüksek satış potansiyeline sahip yeni ürünlerin önerilmesi: Bir makine öğrenimi yaklaşımı

    ENES TEZCAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ABDÜL HALİM ZAİM

  5. Veri madenciliği teknikleri ile e-ticaret platformu satış verilerinin incelenmesi

    Analysis of e-Commerce platform sales data using data mining techniques

    YİĞİT ALTUNAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolPamukkale Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜRHAN GÜNDÜZ