Derin öğrenme tabanlı biyomedikal karar destek sistemlerinin oluşturulması
Establishment of biomedical decision support systems through deep learning techniques
- Tez No: 809152
- Danışmanlar: PROF. DR. MEHMET TAHİR GÜLLÜOĞLU
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Harran Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 114
Özet
Bu tez, derin öğrenme ve gelişmiş görüntü işleme tekniklerinin biyomedikal sinyal ve görüntü analizindeki etkin uygulamalarını farklı çalışmalar üzerinde detaylı bir şekilde incelemektedir. Tezin biyolojik sinyaller ile ilgili bölümünde EOG, EEG ve EKG gibi biyomedikal sinyaller incelenmiştir. EOG ve EEG sinyal verilerinin bilgisayar ortamına kaydedilmesi için iki farklı cihaz kullanılmıştır. Bu iki cihazdan biri 14 kanallı EMOTIV EPOC+ diğeri ise OPENBCI Ganglion biyosensing sinyal kayıt kartıdır. İlk çalışma, müzik dinlerken duygusal durumun belirlenmesi için EEG sinyallerinin kullanılması konusuna odaklanmaktadır. İlgili çalışmada, AlexNet ve VGG16 gibi önceden eğitilmiş derin öğrenme modelleri kullanılmış ve bu modellerin, insan duygusal durumlarının tanınması problemini çözmedeki potansiyelini gözler önüne sermiştir. En iyi sınıflandırma sonucu %73.28 doğrulukla VGG16 kullanılarak ve Beta frekans bandı spektrogramları üzerinde elde edilmiştir. Bu bulgular, müzik verisi ile hazırlanan EEG veri setlerinin ve mevcut veri setlerinin, insan duygusal durumlarının tanınması probleminde farklı derin ağ modelleri ile kullanılmasını teşvik etmektedir. İkinci çalışma, COVID-19 hastalığının erken tespitine yöneliktir. Gelişmiş bir görüntü iyileştirme teknolojisi olan ÇAGKAA-KSAHE ile X-ışını görüntülerinin kontrastı artırılmış ve bu geliştirilmiş veri, Konvolüsyonel sinir ağları ile sınıflandırılmıştır. Çalışma sonuçları, sunulan yöntemin COVID19, normal ve pnömoni durumlarını sınıflandırmada yüksek doğruluk oranlarına sahip olduğunu göstermektedir. Bu tez, EEG sinyalleri üzerinden duygu tanıma ve X-ışını görüntü analizi yoluyla COVID-19 tespiti gibi çeşitli uygulama alanlarında derin öğrenme ve görüntü işleme tekniklerinin kullanımının önemli değeri ve uygulanabilirliği hakkında dikkat çekici bilgiler sunmaktadır.
Özet (Çeviri)
This thesis provides a comprehensive examination of the effective applications of deep learning models and advanced image processing techniques in biomedical signal and image analysis through two distinctive studies. The section dedicated to biological signals in the thesis focused on the examination of biomedical signals such as EOG, EEG, and EKG. To record the EOG and EEG signal data in a computerized environment, two distinct devices were employed. One of these devices is the 14-channel EMOTIV EPOC+, while the other is the OPENBCI Ganglion biosensing signal recording board. The first study focuses on determining the emotional state while listening to music using electroencephalography (EEG) signals. Here, pre-trained deep learning models such as AlexNet and VGG16 are deployed, revealing their potential in solving the problem of recognizing human emotional states. The highest classification result is achieved at a 73.28% accuracy using VGG16 and Beta frequency band spectrograms. These findings advocate the usage of EEG datasets prepared with music data and existing datasets with different deep network models in the problem of human emotional state recognition. The second study is geared towards the early detection of the COVID-19 disease. The contrast of X-ray images is enhanced with an advanced image enhancement technology, MOCSCLAHE, and this enhanced data is classified with convolutional neural networks. The study results show high accuracy rates of the method in classifying COVID-19, normal, and pneumonia cases. This thesis presents compelling insights into the significant value and applicability of using deep learning models and image processing techniques in various application areas such as emotion recognition over EEG signals and COVID-19 detection through X-ray image analysis.
Benzer Tezler
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK
- Kronik inflamatuvar demiyelinizan polinöropati (CIDP) hastalığının teşhisinde makine öğrenme algoritmaları kullanılarak karar destek sistemi oluşturma
Developing a decision support system for the diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP) using machine learning algorithms
HÜSEYİN AKBUDAK
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiBiyomedikal Ana Bilim Dalı
DOÇ. DR. MUHAMMET SERDAR BAŞÇIL
- Mathematical model-based clinical decision support system algorithm design study that can support the diagnosis of celiac disease
Çölyak hastalığının teşhisine destek verebilecek matematik model tabanlı kds algoritması tasarımı
ELİF KESKİN BİLGİÇ
Doktora
İngilizce
2024
Mühendislik Bilimleriİstanbul Üniversitesi-CerrahpaşaBiyomedikal Mühendisliği Ana Bilim Dalı
DR. İNCİ ZAİM GÖKBAY
DOÇ. DR. YUSUF KAYAR
- Patolojik seslerin tanısı için derin öğrenme tabanlı tıbbi karar destek sisteminin geliştirilmesi
Development of a deep learning-based medical decision support system for the diagnosis of pathological voices
İREM BİGAT
Yüksek Lisans
Türkçe
2022
BiyomühendislikTOBB Ekonomi ve Teknoloji ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
PROF. DR. OSMAN EROĞUL
- Tıbbi görüntülerden derin öğrenme tabanlı hastalık teşhisi için öznitelik çıkarma, sıralama ve seçme yöntemlerine dayalı yeni bir karar destek sistemi
A new decision support system based on feature extraction, ranking and selection methods for deep learning-based disease diagnosis from medical images
TUĞBA NUR BOZKURT
Yüksek Lisans
Türkçe
2024
Mühendislik BilimleriErciyes ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET EMİN YÜKSEL