Geri Dön

Application of artificial neural networks to structural reliability problems

Yapay sinir ağlarının yapısal güvenilirlik problemlerine uygulanması

  1. Tez No: 813123
  2. Yazar: FAHRİ BARAN KÖROĞLU
  3. Danışmanlar: PROF. DR. ENGİN AKTAŞ, DOÇ. DR. MARC MAGUIRE
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 173

Özet

Yapı mühendisliğindeki çağdaş yaklaşım, güvenlik faktörlerini kullanarak talep ve dayanım parametrelerinden kaynaklanan belirsizlikleri dolaylı olarak ele almaktadır. Yapı mühendisliğindeki bu belirsizlikleri göz önünde bulundurmak için, bunların istatistiksel özelliklerinin doğrudan analiz ve tasarım sürecine dahil edilmesi gerekir. Ancak bu yaklaşım, zorlayıcı olan, çok katlı olasılık integrallerinin hesaplanmasını gerektirir. İntegrallerin hesaplanmasına alternatif olarak FORM ve SORM olarak bilinen yaklaşık yöntemler geliştirilmiştir. Ne yazık ki, bu yöntemlerin, eldeki probleme bağlı olarak, doğruluk ve yakınsama sorunları olabilmektedir. Yaklaşık yöntemlerle ilgili problemlerin üstesinden gelmek için benzetim tabanlı yapısal güvenilirlik yöntemleri geliştirilmiştir. Bu yöntemlerle ilgili temel sorun, genellikle ya sonlu elemanlar analizi ile kullanıldıklarında hesaplama maliyetlerinin yüksek olması ya da hesaplama maliyetini azaltmak için daha spesifik bir yöntem seçildiğinde bunların uygulanmasının zor olmasıdır. Bu çalışmada, yapay sinir ağları düşük hesaplama maliyeti ile doğru olasılık tahminleri elde etmek için yapısal güvenilirlik problemlerine uygulanmıştır. Yapay sinir ağlarının eğitiminde Bayesci Düzenleme adı verilen özel bir öğrenme algoritması türü kullanılmıştır. Ayrıca yapay sinir ağlarının yapısal güvenilirlik problemlerine uygulanmasına ilişkin detaylara da yer verilmiştir. Çalışmanın sonunda yapay sinir ağlarının yapısal güvenilirlik problemlerine uygulanmasının lehte ve aleyhte noktaları belirtilmiş ve diğer bilinen yöntemlerle karşılaştırılmıştır. Ayrıca uyarlanabilir bir algoritma ve yeni bir yakınsama kriteri geliştirilmiştir. Yapay sinir ağlarının yapısal güvenilirlik problemlerine uygulanmasının hem verimli hem de doğru olasılık tahminleri verdiği gözlemlenmiştir.

Özet (Çeviri)

The contemporary approach in structural engineering indirectly addresses uncertainties arising from load and resistance parameters by using safety factors. To consider these uncertainties in structural engineering, it is necessary to incorporate their statistical properties into the analysis and design process. However, this approach requires the calculation of challenging multi-fold probability integrals. Approximate methods known as FORM and SORM have been developed as an alternative to calculating those integrals. Unfortunately, these methods might have accuracy and convergence problems depending on the problem at hand. Simulation-based structural reliability methods have been developed to overcome the problems associated with approximate methods. The main problem with these methods is that they are often computationally expensive when along with finite element analysis, or it is hard to implement them when a more specific method is chosen to reduce computational costs. In this study, artificial neural networks have been applied to structural reliability problems to obtain accurate probability estimates with low computational cost. A special type of learning algorithm called Bayesian Regularization was used in the training of artificial neural networks. Additionally, details of the application of artificial neural networks to structural reliability problems are provided. At the end of the study, the advantages and disadvantages of applying artificial neural networks to structural reliability problems are presented and compared with other known structural reliability methods. Additionally, a new convergence criterion and an adaptive algorithm have been developed. It was observed that applying artificial neural networks to structural reliability problems provides both efficient and accurate probability estimates.

Benzer Tezler

  1. Dinamik algılayıcı öğrenme algoritması ile kenar saptamanın öğrenilmesi

    Learning of edge detection using recurrent perceptron learning algorithm

    FİLİZ YOSMA TAŞKIN

    Yüksek Lisans

    Türkçe

    Türkçe

    1995

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    DOÇ.DR. CÜNEYT GÜZELİŞ

  2. Enformasyon teknolojisi

    Başlık çevirisi yok

    İZZET HAKAN YAREN

    Yüksek Lisans

    Türkçe

    Türkçe

    1996

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Y.DOÇ.DR. CENGİZ GÜNGÖR

  3. Öngerilme betonarme plak köprülerin yapay sinir ağları ile hesabı

    Calculation of prestressed concrete slab bridges with artificial neural networks

    VOLKAN BAHAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    İnşaat MühendisliğiErciyes Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    Y.DOÇ.DR. YAŞAR UĞUR

  4. Yapay sinir ağı tabanlı kaotik işaret üreteci tasarımı ve uygulamaları

    Design and application of artificial neural network based chaotic signal generator

    İLKER DALKIRAN

    Doktora

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik MühendisliğiErciyes Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. KENAN DANIŞMAN

  5. Tek A'lı çekirdeklerin taban-durum manyetik momentlerinin sinirsel-bulanık sistemiyle belirlenmesi

    Determination of the ground-state magnetic moments of odd mass nuclei using neuro-fuzzy system

    BÜRUCE ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN YAKUT