Advertisement click prediction using reinforcement learning
Reklam tıklama tahmini için takviyeli öğrenme
- Tez No: 814214
- Danışmanlar: DR. ÖĞR. ÜYESİ BEYTULLAH YILDIZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Yazılım Mühendisliği Bilim Dalı
- Sayfa Sayısı: 79
Özet
Çevrimiçi reklamcılıkta kritik öneme sahip tıklama oranı (CTR) tahmini için geleneksel yöntemler, kullanıcı tercihlerinin dinamikliği ve reklamların alakasını kapsamada zorlanırken, yeni stratejilerin keşfini başarılı olanlarla dengeli bir şekilde sağlayan Thompson Örnekleme gibi takviyeli öğrenme (RL) algoritmaları, etkili bir çözüm sunar. Bu araştırmada, gerçek dünya reklam izlenimleri ve tıklamalarını simüle etmek için özel bir OpenAI Gym ortamını ve kullanıcı tercihlerinin ve reklamların alakasının sürekli değişimini ele alan dinamik CTR'yi tahmin etmek için bir Thompson Örnekleme uygulamasını içeren yeni bir RL tabanlı yaklaşım sunuyoruz. Bulgular, Thompson Örnekleme'nin CTR tahmininde, diğer RL stratejilerinden yaklaşık \%10 daha yüksek bir güven seviyesi ile, üstün bir performans sergilediğini ve bu sayede çevrimiçi reklam seçim süreçlerinin önemli ölçüde gelişebileceğini, böylece daha yüksek CTR'ler ve potansiyel olarak reklam yayıncıları için artan gelir sağlayabileceğini öne sürüyor.
Özet (Çeviri)
Click-through rate (CTR) prediction plays a vital role in online advertising, influencing advertisement display and advertiser cost. However, traditional methods struggle to encapsulate user preference dynamics and advertisement relevance. To address this limitation, reinforcement learning (RL) algorithms, such as Thompson Sampling, offer a promising solution by effectively balancing the exploration of new strategies with the exploitation of successful ones. In this research, we introduce a novel RL-based approach for CTR prediction which involves a custom OpenAI Gym environment to simulate real-world advertisement impressions and clicks, and an implementation of Thompson Sampling to estimate CTR dynamically, addressing the continuous evolution of user preferences and advertisement relevance. Results showed that Thompson Sampling demonstrated superior performance in CTR prediction, outperforming other RL strategies. Notably, the algorithm exhibited a confidence level nearly 10\% higher than other methods. Our findings suggest that leveraging RL algorithms, particularly Thompson Sampling, can significantly enhance online advertisement selection processes, leading to higher CTRs and potentially increased revenue for publishers.
Benzer Tezler
- Conversion rate prediction in search engine marketing
Arama motoru pazarlama dönüşüm oranı tahmini
RAZIEH NABI ABDOLYOUSEFI
Yüksek Lisans
İngilizce
2014
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Şehir ÜniversitesiElektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı
Assist. Prof. Dr. AHMET BULUT
- Fuzzy clustering based ensemble learning approach: Applications in digital advertising
Bulanık kümeleme tabanlı topluluk öğrenmesi yaklaşımı: Dijital reklam alanında uygulamalar
AHMET TEZCAN TEKİN
Doktora
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
PROF. DR. FERHAN ÇEBİ
PROF. DR. TOLGA KAYA
- Developing machine learning methods for network anomaly detection
Bilgisayar ağlarında anormal durum tespiti yapan öğrenme yöntemlerinin geliştirilmesi
HABIBU SHOMARI MUKHANDI
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAbdullah Gül ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ZAFER AYDIN
- Predicting user clicks on online advertisements using machine learning
Makine öğrenmesini kullanarak çevrimiçi reklamlara kullanıcı tıklamalarını tahmin etmek
ASHRAF FARHAN HATEM AL-KHAFAJİ
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiBilişim Teknolojileri Ana Bilim Dalı
DR. ÖĞR. ÜYESİ OĞUZ KARAN
- Hybrid reciprocal recommendation with advanced feature representations
Gelişmiş özellik gösterimleri ile hibrit çift taraflı öneri sistemleri
EZGİ YILDIRIM
Doktora
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ŞULE ÖĞÜDÜCÜ