Geri Dön

Yapay zeka teknikleri ile tedarik zincirinde ön sipariş tahmini

Backorder prediction in the supply chain with artificial intelligence techniques

  1. Tez No: 819342
  2. Yazar: SİMGE KARABAĞ
  3. Danışmanlar: PROF. DR. NURSEL ÖZTÜRK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Bursa Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Endüstri Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 70

Özet

Ön sipariş, tedarik zincirindeki herhangi bir eksiklik, artan ürün talebi veya ürün envanterinin tükenmesi nedeniyle müşterinin talep ettiği mal veya hizmetlerin gelecekte belirli bir tarihe kadar teslim edilmesini garanti edebilen bir sipariştir. Ön siparişler, ani talep artışları, kötü tedarik zinciri yönetimi ve yanlış envanter yönetimi durumlarında meydana gelir. Tedarik zincirindeki aksamalar, müşteri taleplerinde öngörülemeyen artışlar ve yanlış stok yönetimi durumlarında ön siparişler bir zorunluluk haline gelebilir. Bu çalışmada ön sipariş durumunun analiz edilmesi ve gelecekte karşılaşılabilecek ön siparişlerin tahmin edilmesi amaçlanmıştır. Bu şekilde firmalar ön siparişe girecek ürünleri tahmin ederek tedarik zincirindeki oluşması muhtemel aksamaları önleyebilecektir. Bu çalışmada, ön sipariş durumunun tahmini için yapay zeka makine öğrenimi algoritmalarından Derin Sinir Ağları (DNN), Rastgele Orman (RF) ve Aşırı Gradyan Artırma (XGBoost) teknikleri kullanılarak Python ve TAZI programları üzerinde yapılan çalışma ve uygulamaların sonuçları paylaşılmıştır. Literatürdeki çalışmalarda kullanılan makine öğrenimi sınıflandırıcıları, yöntemleri ve gerçekleşen sonuçlar ile elde edilen algoritmaların başarı oranları açıklanmaktadır. Bu tez çalışmasında elde edilen bulgulara göre önerilen model sonuçları AUC metriği baz alındığında 0.959 değeri ile Rastgele Orman algoritması en iyi performansa sahip algoritmadır. Ön sipariş tahmininin yapay zeka teknikleri kullanılarak yapılması, tedarik zinciri maliyetleri ve envanter yönetimi açısından işletmelere fayda sağlayabilecektir.

Özet (Çeviri)

A backorder is an order that can guarantee the delivery of the goods or services requested by the customer by a specified date in the future due to any shortcomings in the supply chain, increased product demand, or depletion of product inventory. Backorders occur in situations of sudden demand increases, weak supply chain management and incorrect inventory management. Backorders can become a necessity in cases of disruptions in the supply chain, unforeseen increases in customer demands and incorrect inventory management. In this study, it is aimed to analyze the backorder status and to predict future backorders. In this way, companies will be able to prevent possible disruptions in the supply chain by predicting the products that will enter the backorder. In this study, the results of the studies and applications made on Python and TAZI programs by using Deep Neural Networks (DNN), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) techniques, which are artificial intelligence machine learning algorithms, are shared for the prediction of the backorder status. The machine learning classifiers used in the studies in the literature, their methods and the actual results and the success rates of the algorithms are explained. According to the findings obtained in this thesis study, the Random Forest algorithm has the best performance with a value of 0.959, based on the proposed model results AUC metric. Backorder estimation will benefit companies using supply chain costs and inventory management issues.

Benzer Tezler

  1. Tedarik zinciri yönetiminde yapay zeka tabanlı talep tahmini: Bir tekstil firmasında uygulama

    Ai-based demand forecast in supply chain management: İmplementation in a textile company

    BUSE CEREN AKBAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    İşletmeAkdeniz Üniversitesi

    Uluslararası Ticaret ve Lojistik Ana Bilim Dalı

    DOÇ. DR. FAHRİYE MERDİVENCİ

  2. Yeni ve yenilenmiş ürünler için DQN tabanlı envanter dağıtım ajanı uygulaması

    Implementation of a DQN-based inventory distribution agent for new and refurbished products

    SELİN AYSALAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Endüstri ve Endüstri MühendisliğiYıldız Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. ALEV TAŞKIN

  3. Lojistik sistemlerin yapay sinir ağları ile modellenmesi, gerçeklenmesi ve kontrolü

    Modeling, implementation and control of logistics systems using artificial neural networks

    MURAT ERMİŞ

    Doktora

    Türkçe

    Türkçe

    2005

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF.DR. FÜSUN ÜLENGİL

  4. Global dış satın alma için akıllı karar destek sistemi tasarımı

    Design of intelligent decision support system for global outsourcing decisions

    ASLI AKSOY

    Doktora

    Türkçe

    Türkçe

    2012

    Endüstri ve Endüstri MühendisliğiUludağ Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NURSEL ÖZTÜRK

  5. Sayısal haritalama teknikleri kullanılarak DNA dizilimleri üzerinden lösemi hastalığının temel türlerinin yapay zeka tabanlı algoritmalar ile sınıflandırılması

    Classification of main types of leukemia disease with artificial intelligence-based algorithms on the DNA sequences using digital mapping techniques

    FATMA AKALIN

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. NEJAT YUMUŞAK