Derin öğrenme tabanlı oftalmoloji görüntülerinde veri analizi ve güvenliği
Deep learning based data analysis and security in ophthalmology images
- Tez No: 819909
- Danışmanlar: DOÇ. DR. GIYASETTİN ÖZCAN, PROF. DR. SELİM DOĞANAY
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 70
Özet
Oftalmolojik hastalıkların zamanında teşhisi yapılmadığında ve tedavisi olunmadığında körlüğe kadar giden sonuçlar ortaya çıkmaktadır. Birçok çalışma, erken tedavinin görmeyi tehdit eden bu hastalıklara yakalanılmasının önüne geçildiğini göstermiştir. Örneğin diyabetik retinopati hastalığı dünyadaki şeker hastalarının %80'ini etkilemektedir ve ikinci en büyük körlük nedenlerindendir. Katarakt ise genelde yaşa bağlı bir hastalık olduğu gibi zamanla görme bulanıklığını artırarak hastanın görüşünü engeller. Bu çalışmada oftalmolojik hastalıkların tespiti için derin öğrenme mimarileri kullanılmıştır. Böylece otomatik tespit sistemleri geliştirilerek sağlık hizmetlerinin hızlanması ve uzmanlara yardımcı olunması amaçlanmıştır. Bu amaçla oluşturulan modellerin yüksek doğruluğa sahip olmaları gerekmektedir. Tez kapsamında, oftalmolojik hastalıklardan diyabetik retinopati ve kataraktın tespiti üzerine çalışılmıştır. İnsan retinasına ait bu oftalmolojik hastalıkları tespit etmek için; hastalıklı görüntü veri setleri üzerinde görüntü ön işleme, derin öğrenme ve transfer öğrenimi gibi yöntemlerle modeller geliştirilmiştir. Geliştirilen modeller ile, literatüre katkı sağlayan oranda yüksek sınıflandırma başarısı elde edilmiştir. Diyabetik retinopati için oluşturulan en iyi modelin 5 sınıflandırma ile %96,6 doğruluk oranına ve katarakt için oluşturulan en iyi modelin 2 sınıflandırma ile %97,2 doğruluk oranına ulaştığı ölçülmüştür. Elde edilen doğruluk oranları literatüre katkı sağlamaktadır. Yapılan analizlerde, transfer öğrenimi yönteminin klasik derin öğrenme yöntemlerinden en az %2 olmak üzere daha iyi bir sınıflandırma yapabildiği görülmüştür. Her hastalık için oluşturulan en iyi modeller, uzmanlar tarafından kullanılmak üzere bir web arayüzü ortamında kullanıma sunulmuştur. Bir sonraki aşamada web arayüzünde toplanan verilerin güvenlik gereksinimleri dikkate alınmıştır. Bu doğrultuda sunucuda saklı veriler, literatürde belirtilen en güvenilir algoritma ile şifrelenmekte olup hasta verisi gizliliği hedeflenmiştir. Bu sayede verilerin siber ortamda güvenilir şekilde saklanması sağlanmıştır.
Özet (Çeviri)
When ophthalmological diseases are not diagnosed and treated on time, results leading to blindness occur. Many studies have shown that early treatment can prevent these vision-threatening diseases. For example, diabetic retinopathy affects 80% of diabetic patients in the world and is the second biggest cause of blindness. Cataract, on the other hand, is generally an age-related disease and increases the blurring of vision over time, preventing the patient's vision. In this study, deep learning architectures were used for the detection of ophthalmological diseases. Thus, by developing automatic detection systems, it is aimed to speed up health services and to help specialists. Models created for this purpose must have high accuracy. Within the scope of the thesis, the detection of diabetic retinopathy and cataract from ophthalmological diseases was studied. To detect these ophthalmological diseases of the human retina; Models have been developed on diseased image datasets with methods such as image preprocessing, deep learning and transfer learning. With the developed models, high classification success has been achieved, which contributes to the literature. It was measured that the best model created for diabetic retinopathy reached 96.6% accuracy with 5 classifications, and the best model created for cataracts reached 97.2% accuracy with 2 classifications. The obtained accuracy rates contribute to the literature. In the analysis, it has been seen that the transfer learning method can make a better classification, at least 2%, than the classical deep learning methods. The best models created for each disease are made available in a web interface environment for use by experts. In the next step, the security requirements of the data collected on the web interface were taken into account. In this direction, the data stored on the server is encrypted with the most reliable algorithm specified in the literature, and patient data confidentiality is aimed. In this way, it is ensured that the data is stored reliably in the cyber environment.
Benzer Tezler
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK
- Diabetic retinopathy detection using artificial intelligence
Diyabetik retinopati tespiti yapay zeka kullanmak
MOHAMED ASHRAF SAMY TANTAWY ELSERWY
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Aydın ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
PROF. DR. ALİ OKATAN
- A modified resnet-50 CNN model for classification of eye diseases.
Göz hastalıklarının sınıflandırılmasına yönelik modifiye bir resnet-50 CNN modeli
SAJAD ABDLKADHIM ABDLHUSEIN ALKHAYKANE
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SAİT DEMİR
DR. ÖĞR. ÜYESİ ASHWAN A. ABDULMUNEM
- Retinal hastalıkların oftalmolojik görüntüler üzerinden derin öğrenme teknikleri ile tespit edilmesi
Detection of retinal diseases on ophthalmological i̇mages by deep learning techniques
SAFİYE PELİN TAŞ
Yüksek Lisans
Türkçe
2021
BiyomühendislikAfyon Kocatepe ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÜR EMRE GÜRAKSIN
- Derin öğrenme tabanlı bakteri sınıflandırma
Deep learning based bacteria classification
ÖMER FARUK NASİP
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTokat Gaziosmanpaşa ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ KENAN ZENGİN