Doğancı barajı'nda meteorolojik veriler ile su kalitesi ve su seviyesi arasındaki ilişkinin yapay sinir ağları ile modellenmesi
Modeling the relationship between meteorological and Doğancı dam's water quality and water level data using artificial neural networks
- Tez No: 823184
- Danışmanlar: DOÇ. DR. ASLIHAN KATİP
- Tez Türü: Yüksek Lisans
- Konular: Çevre Mühendisliği, Environmental Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 65
Özet
Nüfus artışı, endüstrileşme ve aşırı enerji tüketimi iklim değişikliğine yol açtı ve barajlar gibi su kaynaklarını etkilemektedir. Bu etkileri anlamak için bu çalışmada meteorolojik parametreler dikkate alınarak ileri beslemeli sinir ağları (IBSA) kullanılmıştır. Modelin başarısı, gözlenen ve tahmin edilen veriler arasındaki ortalama kare hataya ve korelasyon katsayısına dayanarak belirlenmiştir. İlk modellemede meteorolojik girdiler ve çıktı olarak Doğancı Barajı su kalitesi verileri kullanılarak üç farklı model test edilmiştir. Bu modellemede, en düşük OKH (1,20) ve en yüksek korelasyona (0,98) sahip olan modelde hava sıcaklığı, güneş radyasyonu ve güneş yoğunluğu gibi girişlerle Doğancı Barajı su sıcaklığı, pH, çözünmüş oksijen, manganez, arsenik ve demir konsantrasyonu çıktı olarak kullanılmıştır. İkinci modellemede, farklı meteorolojik girişler ve su bütçesi parametrelerinin çıktıları kullanılarak üç model test edilmiştir. Bu modellemede, hava sıcaklığı, güneş radyasyonu, güneş yoğunluğu, buharlaşma ve evapotranspirasyon gibi girişler kullanılarak Doğancı Barajı hacmi, gelen ve giden su akışı ve su seviyesi gibi çıktılarıyla daha düşük OKH (0,60) ve daha yüksek korelasyon (0,99) elde edilmiştir. Son olarak, Doğancı Barajı'nın su kalitesi parametreleri arasındaki ilişkiyi belirlemek için iki farklı model daha test edilmiştir. İyi performans gösteren modelde (2,5x10-4 hata değeri ve 0,92 korelasyon değeri) su sıcaklığı, alkalinite, pH ve çözünmüş oksijen gibi girişlerle arsenik, mangan ve demir gibi iz elementlerin konsantrasyonları incelenmiştir. Bu çalışmanın sonuçlarına göre, hava sıcaklığı, güneş radyasyonu ve güneş yoğunluğunun bir barajın su kalitesi ve su bütçesini etkilediği görülmektedir. Bu çalışma, yapay sinir ağlarının meteorolojik parametrelerle bir barajın hidrolojisi ve su kalitesi hakkında tahminler yapmak ve etkileşimleri belirlemek için uygun bir araç olduğunu göstermiştir.
Özet (Çeviri)
Population growth, industrialization and excessive energy consumption have led to climate change and are affecting water resources such as dams. To understand these effects, feed-forward neural networks (FFNN) were used in this study, taking into account meteorological parameters. The success of the model was determined based on the mean square error and correlation coefficient between the observed and predicted data. In the first modeling, three different models were tested using meteorological data as input and the water quality data of Doğancı Dam as output. In this modeling, the model with the lowest mean square error (1.20) and the highest correlation (0.98) utilized meteorological inputs such as air temperature, solar radiation, and solar intensity to predict the output parameters, which include water temperature, pH, dissolved oxygen, manganese, arsenic, and iron concentrations of Doğancı Dam. In the second modeling, three models were tested using different meteorological inputs and outputs of water budget parameters. In this modeling, using inputs such as air temperature, solar radiation, solar intensity, evaporation, and evapotranspiration, the Doğancı Dam's water volume, water level, incoming and outgoing water flow were predicted with a lower mean square error (0.60) and a higher correlation (0.99). Finally, two different models were tested to determine the relationship between Doğancı Dam's water quality parameters. In the well-performing model (error value of 2.5x10-4 and correlation value of 0.92), inputs such as water temperature, alkalinity, pH and dissolved oxygen and outputs such as concentrations of trace elements (arsenic, manganese and iron) were investigated. According to the results of this study, it is seen that air temperature, solar radiation and solar intensity affect the water quality and water budget of a dam. This study showed that neural networks are a suitable tool to make predictions about the hydrology and water quality of a dam and determine their interactions with meteorological parameters.
Benzer Tezler
- Bulanık tahmin yöntemleri ve iki farklı alanda uygulanması
Fuzzy forecasting methods and its applications in two different subjects
MUSTAFA ŞAHİN
Yüksek Lisans
Türkçe
2015
EkonometriYıldız Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. İHSAN KAYA
- Bursa ili yüzeysel sularında asimile edilebilir organik karbon (AOK) miktarının belirlenmesi
Determination of assimediable organic carbon (AOK) in surface water in Bursa province
İZEL KENAN
Yüksek Lisans
Türkçe
2023
MikrobiyolojiBursa Uludağ ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DOÇ. DR. ARZU TEKSOY
- Bursa kentinde su kıtlığının iklim değişikliği ve nüfus senaryoları açısından makine öğrenmesi kullanılarak incelenmesi
Investigation of water scarcity in terms of climate change and population scenarios via machine learning in the city of Bursa
SEMANUR COŞKUN
Yüksek Lisans
Türkçe
2022
CoğrafyaBursa Uludağ ÜniversitesiCoğrafya Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ABDULLAH AKBAŞ
- Doğancı barajı havza yönetiminde, rezervuar matematik modellemesi
Başlık çevirisi yok
HÜLYA GENÇ
Yüksek Lisans
Türkçe
1998
Çevre MühendisliğiUludağ ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. FEZA KARAER
- İçme sularından organik madde giderimi ve trihalometan oluşumunun önlenmesi için arıtma proseslerinin optimizasyonu
Optimization of treatment processes for organic matter removal from drinking water and prevention of trihalomethane formation
ARZU TEKSOY
Yüksek Lisans
Türkçe
2006
Çevre MühendisliğiUludağ ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
PROF.DR. HÜSEYİN SAVAŞ BAŞKAYA