Geri Dön

Dikkat tabanlı evrişimli sinir ağları ile görüntülerde gürültü giderme

Denoise in images with attention-based convolution neural networks

  1. Tez No: 850560
  2. Yazar: NEVAL KARACA
  3. Danışmanlar: DR. ÖĞR. ÜYESİ SERDAR ÇİFTÇİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Harran Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 60

Özet

Bilgisayarlı görü uygulamalarının başarımında ve insan görsel memnuniyetinde görüntülerin net ve gerçeğe yakın olmasının önem arz etmesi görüntü kalitesi iyileştirme çalışmalarına olan ihtiyacı artırmıştır. Görüntü kalitesi iyileştirme çalışmalarının çoğunluğu gürültü giderme problemi üzerine yoğunlaşmıştır. Bu problem; görüntü yakalama, sıkıştırma ve aktarma gibi farklı kaynaklardan dolayı oluşabilmekte ve bu durumun üstesinden gelmek için farklı çözüm yaklaşımları denenerek uzunca bir süre çalışmalar yapılmıştır. Bu çalışmada, gürültü gidermede başarılı performans sergileyen derin öğrenme tabanlı bir yaklaşım olan Evrişimli Sinir Ağ tabanlı Hızlı ve Esnek Gürültü Giderme modeli (FFDNet) temel alınmış ve FFDNet'in gürültü giderme yeteneğini iyileştirmek amacıyla mimariye Evrişimsel Blok Dikkat Modülü (CBAM) dahil edilmiştir. CBAM modülü iki ayrı dikkat mekanizması içermekte olup FFDNet mimarisine dahil edilmesiyle Evrişimsel Sinir Ağlarının (CNN) temsil gücünü artmıştır. FFDNet mimarisi üzerinde ablasyon çalışmaları yapılmış ve CBAM modülünün yalnızca son katmana eklendiğinde başarılı sonuç verdiği görülmüştür. Önerilen yöntem ile farklı seviyelerde gürültü değerleriyle deneyler yapılmış ve nicel ölçümlerde PSNR, SSIM ve LRI metriklerinde iyileşmeler elde edilmiştir. Elde edilen görüntülerin görsel kalitesi incelendiğinde önerilen yöntemin hedef görüntülere daha yakın sonuçlar oluşturduğu gözlemlenmiştir.

Özet (Çeviri)

The need for image quality enhancement studies has increased due to the importance of clear and realistic images for the performance of computer vision applications and for human viewing pleasure. Most image quality enhancement studies have focused on the problem of noise removal. This problem can be caused by various sources such as image acquisition, compression, and transmission, and various approaches have been tried for a long time to overcome this problem. This study is based on Toward a Fast and Flexible Solution for CNN based Image Denoising (FFDNet), one of the successful denoising methods, in which a Convolutional Block Attention Module (CBAM) has been integrated into the architecture to improve the denoising capability of FFDNet. The CBAM module contains two separate attention mechanisms, and its inclusion in the FFDNet architecture has increased the representational performance of convolutional neural networks. Ablation studies were performed with the FFDNet architecture, and it was found that the CBAM module gives successful results only when it is added to the last layer. Experiments with the proposed method were performed with different noise levels, and improvements in the PSNR, SSIM, and LRI metrics were obtained in the quantitative measurements.When analyzing the visual quality of the images, it can be seen that the proposed method provides results that are closer to the target images.

Benzer Tezler

  1. Prediction of COVID 19 disease using chest X-ray images based on deep learning

    Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini

    ISMAEL ABDULLAH MOHAMMED AL-RAWE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ADEM TEKEREK

  2. Öz bilgi destekli derin öğrenme yaklaşımları ile hsg gürültü giderme

    Self-ınformation empowered deep learning approaches for hsı denoising

    ORHAN TORUN

    Doktora

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SENİHA ESEN YÜKSEL ERDEM

    PROF. DR. MEHMET ERKUT ERDEM

  3. Classification of abnormal respiratory sounds using deep learning techniques

    Solunum seslerinin derin öğrenme yöntemleri ile sınıflandırılması

    AHAMADI ABDALLAH IDRISSE

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    DOÇ. DR. OKTAY YILDIZ

  4. On real-world face super-resolution and face image synthesis evaluation

    Gerçek dünya yüz süper çözünürlüğü ve yüz görüntüsü sentezi değerlendirmesi üzerine

    ERDİ SARITAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HAZIM KEMAL EKENEL

  5. Termal görüntü çözünürlüğünün artırılması için derin öğrenme tabanlı bulut sisteminin geliştirilmesi

    Development of cloud system based on deep learning for thermal image resolution enhancement

    FATİH MEHMET ŞENALP

    Doktora

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik MühendisliğiKonya Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MURAT CEYLAN