Geri Dön

Enhancing breast cancer detection with a hybrid machine learning approach

Hı̇brı̇t makı̇ne öğrenme yaklaşımı ı̇le göğüs kanserı̇ tespı̇tı̇nı̇n gelı̇ştı̇rı̇lmesı̇

  1. Tez No: 876352
  2. Yazar: MUSTAFA ETCİL
  3. Danışmanlar: DOÇ. DR. BURCU GÜNGÖR, PROF. DR. V. CAGRİ GÜNGÖR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Abdullah Gül Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 56

Özet

Dünya Sağlık Örgütü (WHO) tarafından belirlendiği üzere, göğüs kanseri, son beş yılda 7.8 milyon yeni vakayla en yaygın kanser türlerinden biri olarak ön plana çıkmaktadır. Bu çarpıcı istatistik, gelişmiş tanı yöntemlerine olan acil ihtiyacı vurgulamaktadır. Bu bağlamda, mevcut çalışma, göğüs kanseri tespiti için lojistik regresyon modeli eğitim sürecini iyileştirmek amacıyla klonal seçim algoritması (CSA) ile parçacık sürü optimizasyonunu (PSO) yenilikçi bir şekilde birleştiren CSA-PSO-LR sınıflandırıcısını önermektedir. Bu araştırma, geniş çapta tanınan iki veri seti olan Wisconsin Diagnostik Göğüs Kanseri (WDBC) ve Wisconsin Göğüs Kanseri Veritabanı (WBCD) kullanılarak, performans değerlendirmesi için 10 kat çapraz doğrulama ve Bayes hiperparametre optimizasyonunu içeren katı bir değerlendirme protokolü uygulamaktadır. Ayrıca, çalışma, model eğitim süresini önemli ölçüde kısaltmayı amaçlayan CPU paralelleştirme stratejilerini tanıtmaktadır. Karar ağaçları, aşırı gradyan artırma, en yakın komşular, lojistik regresyon, rastgele ormanlar ve destek vektör makineleri gibi makine öğrenimi algoritmalarına karşı yapılan karşılaştırmalı analizler, CSA-PSO-LR sınıflandırıcısının tespit doğruluğu ve F1-ölçütü açısından üstün performans sergilediğini göstermektedir. Bu araştırma, göğüs kanserinin erken tespitine yönelik yenilikçi bir yaklaşım sunarak, daha etkili tedavi planlarının kolaylaştırılmasına ve hastaların hayatta kalma beklentilerinin artırılmasına katkıda bulunmaktadır.

Özet (Çeviri)

According to the World Health Organization (WHO), breast cancer is one of the most prevalent illnesses, with 7.8 million instances recorded in the previous five years. As such, it poses a serious threat to world health. This alarming statistic underscores the urgent necessity for enhanced diagnostic methods. Against this backdrop, the current study proposes a novel diagnostic model, the CSA-PSO-LR classifier, which innovatively combines the clonal selection algorithm (CSA) with particle swarm optimization (PSO) to refine the logistic regression model training process for breast cancer detection. This research employs two extensively recognized datasets: the Wisconsin Diagnostic Breast Cancer (WDBC) and the Wisconsin Breast Cancer Database (WBCD), putting into practice a strict evaluation procedure that assesses performance using Bayesian hyperparameter optimization and 10-fold cross-validation. Furthermore, the study introduces CPU parallelization strategies to significantly curtail the model training time. Comparative analyses against machine learning algorithms, encompassing decision trees, extreme gradient boosting, k-nearest neighbors, logistic regression, random forests, and support vector machines, demonstrate the CSA-PSO-LR classifier's superior performance in detection accuracy and F1-measure. This investigation contributes a groundbreaking approach to the early detection of breast cancer, potentially facilitating more effective treatment plans and enhancing patient survival prospects.

Benzer Tezler

  1. Meme kitlelerinde MR-spektroskopi'nin tanıya katkısı

    Contribution of MR-spectroscopy in evaluation of breast masses

    IŞIL TOPCU

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2004

    Radyoloji ve Nükleer TıpDokuz Eylül Üniversitesi

    Radyoloji Ana Bilim Dalı

    PROF. DR. PINAR BALCI

  2. Analysis of cancer dataset with statistical learning

    Kanser veri setinin istatistiksel öğrenme ile analizi

    ASMAA SALIM HUSSAIEN ALWAZY

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankırı Karatekin Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SELİM BUYRUKOĞLU

    DR. ÖĞR. ÜYESİ GONCA BUYRUKOĞLU

  3. Brest cancer detection and image evaluation using amugented deep convolutional neural network

    Genişletilmiş derin evrişimsel sinir ağı kullanarak göğüs kanseri tespiti ve görüntü değerlendirmesi

    SAADALDEEN RASHID AHMED AHMED

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilişim Teknolojileri Ana Bilim Dalı

    PROF. DR. OSMAN NURİ UÇAN

    DOÇ. DR. ADİL DENİZ DURU

  4. Detection and classification of breast cancer in whole slide histopathology images using deep convolutional networks

    Derin evrişimli ağlar ile tüm slayt histopatolojisi resimlerinde meme kanseri tesbiti ve sınıflandırılması

    BARIŞ GEÇER

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SELİM AKSOY